[1]尹晓冬,李浩,成永忠,等.三臂十一轴骨折复位机器人在山羊胫骨干骨折复位中应用的实验研究[J].中医正骨,2024,36(12):1-7.
 YIN Xiaodong,LI Hao,CHENG Yongzhong,et al.Applying a three-arm eleven-axis robot in the reduction of tibial shaft fractures in goats:an experimental study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2024,36(12):1-7.
点击复制

三臂十一轴骨折复位机器人在山羊胫骨干骨折复位中应用的实验研究()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第36卷
期数:
2024年12期
页码:
1-7
栏目:
基础研究
出版日期:
2024-12-20

文章信息/Info

Title:
Applying a three-arm eleven-axis robot in the reduction of tibial shaft fractures in goats:an experimental study
作者:
尹晓冬1李浩2成永忠1陈洋1刘飞1李锐1陈健龙3肖嘉冕3李春广4王书元4李克4
1.中国中医科学院望京医院,北京 100102; 2.聊城市人民医院,山东 聊城 252000; 3.北京中医药大学研究生院,北京 100029; 4.南阳市中医院,河南 南阳 473006
Author(s):
YIN Xiaodong1LI Hao2CHENG Yongzhong1CHEN Yang1LIU Fei1LI Rui1CHEN Jianlong3XIAO Jiamian3LI Chunguang4WANG Shuyuan4LI Ke4
1.Wangjing Hospital of CACMS,Beijing 100102,China 2.Liaocheng People's Hospital,Liaocheng 252000,Shandong,China 3.Graduate School of Beijing University of Chinese Medicine,Beijing 100029,China 4.Nanyang TCM Hospital,Nanyang 473006,Henan,China
关键词:
胫骨骨折 机器人外科手术 山羊 动物实验
Keywords:
tibial fractures robotic surgical procedures goats animal experimentation
摘要:
目的:研究应用三臂十一轴骨折复位机器人进行山羊胫骨干骨折复位的有效性和安全性。方法:选取健康雄性山羊6只,将每只山羊的双侧后肢采用抽签法随机分为机器人复位组和徒手复位组,每组6条山羊后肢。在山羊双侧后肢胫骨下1/3处截骨建立山羊胫骨干骨折模型,然后机器人复位组采用三臂十一轴骨折复位机器人进行骨折闭合复位,徒手复位组徒手进行骨折闭合复位。骨折复位后均采用外固定支架固定。记录术中骨折达到复位标准的复位次数、X线透视次数,以及复位参与人数和手术时间(从开始切口造模至骨折复位固定完成的时间,包括造模及复位准备时间和骨折复位固定时间2部分)。观察术中机器人设备运行情况。手术结束后,在山羊后肢X线片上,测量骨折端侧方成角、前后成角、侧方移位距离、轴向移位距离和前后移位距离,评价骨折复位情况。结果:手术过程中三臂十一轴骨折复位机器人运行平稳,无侧翻、结构松动、失控及故障报警等安全事故发生。机器人复位组术中复位参与人数少于徒手复位组(Z=-3.052,P=0.002),造模及复位准备时间长于徒手复位组(Z=-2.908,P=0.004),骨折端侧方成角小于徒手复位组(Z=-2.242,P=0.025); 2组山羊后肢其他手术情况及骨折复位评价指标比较,组间差异均无统计学意义。结论:与徒手复位相比,应用三臂十一轴骨折复位机器人闭合复位山羊胫骨干骨折,骨折复位好、复位参与人数少,且安全性好,但准备时间较长。
Abstract:
Objective:To investigate the outcomes and safety of a three-arm eleven-axis robot in the reduction of tibial shaft fractures(TSFs)in goats.Methods:Six healthy male goats were selected,and their bilateral hind limbs were randomized into a robot reduction group and a manual reduction group by drawing lots,with 6 hind limbs in each group.The TSFs models were established by osteotomy at the lower one-third of the tibia in the bilateral hind limbs of the goats.After successful modeling,the hind limbs in robot reduction group were treated with closed reduction by using a three-arm eleven-axis robot,while,that in manual reduction group by hand.After successful reduction,all fractures were fixed with external fixator.The times of reduction reaching the criteria of fracture reduction during the surgical process,intraoperative X-ray exposure,the participants involved in the reduction,and the surgery time(the time from the beginning of making incision for modeling to the completion of fracture reduction and fixation,including the time for preparing modeling and reduction,and the time for fracture reduction and fixation)were recorded,and the operation of the robot during the surgical process was observed.After the end of the surgery,the lateral angulation,anteroposterior angulation,lateral displacement distance,axial displacement distance,and anteroposterior displacement distance at the fractured ends were measured on the X-ray films of the hind limbs of the goats to evaluate fracture reduction performance.Results:During the surgical process,the three-arm eleven-axis robot ran smoothly without the safety accidents such as rollover,structural looseness,loss of control,and fault alarms.Moreover,the robot reduction group need fewer participants in the reduction,longer time in preparing modeling and reduction,and presented smaller lateral angulation at the fractured end compared to the manual reduction group(Z=-3.052,P=0.002; Z=-2.908,P=0.004; Z=-2.242,P=0.025); while,the comparison of the other surgical conditions and the fracture reduction evaluation indicators for the hind limbs of goats revealed no significant differences between the 2 group.Conclusion:The three-arm eleven-axis robot achieves better fracture reduction performance,needs fewer participants in the reduction,and behaves higher safety,but requires longer preparation time compared to the manual reduction in the closed reduction of TSFs in goats.

参考文献/References:

[1] WU Z,DAI Y,ZENG Y.Intelligent robot-assisted fracture reduction system for the treatment of unstable pelvic fractures[J].J Orthop Surg Res,2024,19(1):271.
[2] VIBERT B,PAILHÉ R,MORIN V,et al.Navigation for lower limb alignment during internal fixation of complex tibial-plateau fractures[J].Orthop Traumatol Surg Res,2018,104(4):491-496.
[3] JATOI A,SAHITO B,KUMAR D,et al.Fixation of crescent pelvic fracture in a tertiary care hospital:a steep learning curve[J].Cureus,2019,11(9):e5614.
[4] GERICKE L,FRITZ A,OSTERHOFF G,et al.Percutaneous operative treatment of fragility fractures of the pelvis may not increase the general rate of complications compared to non-operative treatment[J].Eur J Trauma Emerg Surg,2022,48(5):3729-3735.
[5] KÜPER M A,TRULSON A,MINARSKI C,et al.Risks and strategies to avoid approach-related complications during ope-rative treatment of pelvic ring or acetabular fractures[J].Z Orthop Unfall,2021,159(2):144-152.
[6] HU M,ZENG W,ZHANG J,et al.Fixators dynamization for delayed union and non-union of femur and tibial fractures:a review of techniques,timing and influence factors[J].J Orthop Surg Res,2023,18(1):577.
[7] GRAS F,MARINTSCHEV I,WILHARM A,et al.2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries—a case series[J].BMC Musculoskelet Disord,2010,11:153.
[8] ZHAO J X,LI C,REN H,et al.Evolution and current applications of robot-assisted fracture reduction:a comprehensive review[J].Ann Biomed Eng,2020,48(1):203-224.
[9] BAUZANO E,GARCIA-MORALES I,DEL SAZ-OROZCO P,et al.A minimally invasive surgery robotic assistant for HALS-SILS techniques[J].Comput Methods Programs Biomed,2013,112(2):272-283.
[10] WILSON J T,GERBER M J,PRINCE S W,et al.Intraocular robotic interventional surgical system(IRISS):mechanical design,evaluation,and master-slave manipulation[J].Int J Med Robot,2018,14(1):1002.
[11] BAI L,YANG J,CHEN X,et al.Solving the time-varying inverse kinematics problem for the da vinci surgical robot[J].Appl Sci,2019,9(3):546.
[12] CHEN A F,KAZARIAN G S,JESSOP G W,et al. Robotic technology in orthopaedic surgery[J].J Bone Joint Surg Am,2018,100(22):1984-1992.
[13] JACOFSKY D J,ALLEN M.Robotics in arthroplasty:a comprehensive review[J].J Arthroplasty,2016,31(10):2353-2363.
[14] JOSEPH J R,SMITH B W,LIU X,et al.Current applications of robotics in spine surgery:a systematic review of the literature[J].Neurosurg Focus,2017,42(5):E2.
[15] KONAN S,MADEN C,ROBBINS A.Robotic surgery in hip and knee arthroplasty[J].Br J Hosp Med(Lond),2017,78(7):378-384.
[16] ZHAO C,CAO Q,SUN X,et al.Intelligent robot-assisted minimally invasive reduction system for reduction of unstable pelvic fractures[J].Injury,2023,54(2):604-614.
[17] 中华人民共和国科学技术部.关于发布《关于善待实验动物的指导性意见》的通知[EB/OL].(2006-09-30)[2024-09-20].https://www.most.gov.cn/xxgk/xinxifenlei/fdzdgknr/fgzc/gfxwj/gfxwj2010before/201712/t20171222_137025.html.
[18] ZHAO C,WANG Y,WU X,et al.Design and evaluation of an intelligent reduction robot system for the minimally invasive reduction in pelvic fractures[J].J Orthop Surg Res,2022,17(1):205.
[19] WANG T,LI C,HU L,et al.A removable hybrid robot system for long bone fracture reduction[J].Biomed Mater Eng,2014,24(1):501-509.
[20] BAI L,YANG J,CHEN X,et al.Medical robotics in bone fracture reduction surgery:a review[J].Sensors(Basel),2019,19(16):3593.
[21] KOU W,ZHOU P,LIN J,et al.Technologies evolution in robot-assisted fracture reduction systems:a comprehensive review[J].Front Robot AI,2023,10:1315250.
[22] 成永忠,白金广,王朝鲁,等.基于中国接骨学骨折微创与外固定技术的临床实践与智能化思考[J].中国骨伤,2023,36(9):795-797.
[23] 赵勇,魏光成,连智华.中国接骨学创新发展之思辨[J].中国骨伤,2022,35(7):703-706.

相似文献/References:

[1]肖善富,张喜善,于凤珍.髌下小切口钢丝纽扣式内固定治疗胫骨髁间隆突骨折[J].中医正骨,2015,27(11):34.
[2]葛波涌,王玉波,王明太,等.交锁髓内钉内固定治疗胫骨干骨折的临床研究[J].中医正骨,2015,27(10):8.
 GE Boyong,WANG Yubo,WANG Mingtai,et al.Clinical study on the internal fixation with interlocking intramedullary nail for the treatment of tibial shaft fractures[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(12):8.
[3]全先辉,万春友,刘磊,等.Taylor空间支架外固定治疗胫腓骨开放性骨折[J].中医正骨,2015,27(10):30.
[4]何 涛.有限切开植骨钢板内固定治疗 SchatzkerⅡ、Ⅲ型胫骨平台骨折[J].中医正骨,2015,27(09):22.
[5]何忠,黄宗权,王强,等.胫骨中下段螺旋形骨折合并后踝裂纹骨折的诊治体会[J].中医正骨,2015,27(09):28.
[6]王庆东,李付彬,徐向峰,等.关节镜下可吸收螺钉内固定治疗儿童胫骨髁间嵴骨折[J].中医正骨,2015,27(12):52.
[7]李楠,李锋.胫骨平台骨折的手术治疗进展[J].中医正骨,2015,27(12):78.
[8]张一鸣,张学民,陆洲.经皮解剖型锁定钢板固定治疗胫骨远端骨折[J].中医正骨,2015,27(02):47.
[9]陈利军,田野,刘文刚,等.非典型膝关节外伤后胫骨近端隐匿性骨折的影像诊断[J].中医正骨,2015,27(06):26.
[10]徐俊峰,王翔宇.切开复位锁定加压钢板内固定治疗高能量损伤Pilon骨折[J].中医正骨,2015,27(06):54.

备注/Memo

备注/Memo:
基金项目:中国中医科学院科技创新工程项目(CI2023C004YG); 国家自然科学基金项目(82274561)
通讯作者:成永忠 E-mail:Bless518@139.com
更新日期/Last Update: 1900-01-01