[1]王振宇,张洪美,荆琳,等.免疫细胞特征与骨质疏松症因果关系的双向孟德尔随机化研究[J].中医正骨,2024,36(11):42-52.
 WANG Zhenyu,ZHANG Hongmei,JING Lin,et al.The causal relationship between immune cell signatures and osteoporosis:a bidirectional mendelian randomization study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2024,36(11):42-52.
点击复制

免疫细胞特征与骨质疏松症因果关系的双向孟德尔随机化研究()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第36卷
期数:
2024年11期
页码:
42-52
栏目:
数据库研究
出版日期:
2024-11-20

文章信息/Info

Title:
The causal relationship between immune cell signatures and osteoporosis:a bidirectional mendelian randomization study
作者:
王振宇张洪美荆琳何名江闫奇唐海李园源刘思冶陈彦百王晓庆
中国中医科学院望京医院,北京 100102
Author(s):
WANG ZhenyuZHANG HongmeiJING LinHE MingjiangYAN QiTANG HaiLI YuanyuanLIU SiyeCHEN YanbaiWANG Xiaoqing
Wangjing Hospital of CACMS,Beijing 100102,China
关键词:
骨质疏松 免疫细胞特征 孟德尔随机化分析 全基因组关联研究
Keywords:
osteoporosis immune cell characteristics Mendelian randomization analysis genome-wide association study
摘要:
目的:探讨免疫细胞特征与骨质疏松症(osteoporosis,OP)的因果关系。方法:分别从IEU OpenGWAS project数据库和FINNGEN数据库中筛选并获得731个免疫细胞特征的全基因组关联研究(genome-wide association study,GWAS)数据集和OP的GWAS数据集。基于工具变量筛选标准,筛选符合要求的免疫细胞特征的单核苷酸多态性(single nucleotide polymorphism,SNP)位点和OP的SNP位点。将筛选的免疫细胞特征的SNP位点作为工具变量,采用逆方差加权法(inverse variance weighted,IVW)、MR-Egger、加权中位数、简单模式和加权模式等进行正向孟德尔随机化(Mendelian randomization,MR)分析,评估免疫细胞特征与OP的因果关系。采用MR-presso检验进行水平多效性检验,采用Cochran's Q检验评估IVW法和MR Egger法分析结果的异质性,采用留一法评估MR分析结果的稳定性。将筛选的OP的SNP位点作为工具变量,以正向MR分析获得的与OP具有可靠因果关系的免疫细胞特征为结局进行反向MR分析。结果:32个免疫细胞特征与OP存在可靠的因果关系,其中包含7个绝对细胞计数(absolute cell counts,AC)特征、13个中位荧光强度(median fluorescence intensity,MFI)特征、12个相对细胞计数(relative cell counts,RC)特征。在7个AC特征中,Sw mem AC、IgD-CD38dim AC、HLA DR+NK AC与OP呈负向因果关系,CD62L-myeloid DC AC、CD33br HLA DR+AC、DN(CD4-CD8-)AC、CD25++ CD8br AC与OP呈正向因果关系; 在13个MFI特征中,BAFF-R on IgD-CD38br、CD3 on CD8br、CD3 on CD39+CD4+、CD16-CD56 on NK、CD28 on CD4 Treg、CD16 on CD14-CD16+monocyte、CD8 on TD CD8br与OP呈负向因果关系,CD19 on IgD-CD38br、CD86 on myeloid DC、HLA DR on CD14+CD16-monocyte、HLA DR on CD14+monocyte、CD45 on CD33br HLA DR+CD14-、HLA DR on CD33br HLA DR+CD14dim与OP呈正向因果关系; 在12个RC特征中,IgD+CD38dim%lymphocyte、CD11c+CD62L-monocyte%monocyte、TD CD8br%CD8br、CD39+CD8br%T cell与OP呈负向因果关系,IgD-CD38dim%B cell、CD62L-DC%DC、CD8br%leukocyte、CD8br and CD8dim%leukocyte、NKT%T cell、NKT%lymphocyte、HLA DR+CD8br%lymphocyte、CD3-lymphocyte%leukocyte与OP呈正向因果关系。结论:部分免疫细胞特征与OP之间存在因果关系,这为探究免疫系统与OP间的作用机制提供了线索和方向。
Abstract:
Objective:To explore the causal relationship between immune cell signatures and osteoporosis(OP).Methods:The genome-wide association study(GWAS)datasets about 731 immune cell signatures and OP were retrieved and extracted from the IEU OpenGWAS project database and FINNGEN database,respectively.According to the instrumental variable screening criteria,the eligible single nucleotide polymorphism(SNP)loci for immune cell signatures and OP were screened as the instrumental variables,and then a forward mendelian randomization(MR)analysis was conducted by using inverse variance weighted(IVW),MR-Egger regression,weighted median estimator,simple mode,and weighted mode to assess the causal relationship between immune cell signatures and OP.In addition,the horizontal pleiotropy was examined by MR-presso test,the heterogeneity of the results analyzed by IVW method and MR-egger regression was assessed by Cochran's Q test,and the stability of the MR analysis results was evaluated by leave-one-out(LOO)test.Furthermore,a reverse MR analysis was conducted by taking the screened OP SNP loci as instrumental variable,and the immune cell signatures having a reliable causal relationship to OP obtained from the forward MR analysis as the outcome variable.Results:Seven absolute cell counts(AC)signatures,13 median fluorescence intensity(MFI)signatures and 12 relative cell counts(RC)signatures exhibited a reliable causal relationship with OP.Among the 7 AC signatures,the Sw mem AC,IgD-CD38dim AC,and HLA DR+NK AC showed a inverse causal relationship with OP,while the CD62L-myeloid DC AC,CD33br HLA DR+AC,DN(CD4-CD8-)AC,and CD25++ CD8br AC presented a positive causal relationship with OP.Among the 13 MFI signatures,the BAFF-R on IgD-CD38br,CD3 on CD8br,CD3 on CD39+CD4+,CD16-CD56 on NK,CD28 on CD4 Treg,CD16 on CD14-CD16+monocyte,and CD8 on TD CD8br showed a inverse causal relationship with OP,while the CD19 on IgD-CD38br,CD86 on myeloid DC,HLA DR on CD14+CD16-monocyte,HLA DR on CD14+monocyte,CD45 on CD33br HLA DR+CD14-,HLA DR on CD33br HLA DR+CD14dim presented a positive causal relationship with OP.Among the 12 RC signatures,the IgD+CD38dim%lymphocyte,CD11c+CD62L-monocyte%monocyte,TD CD8br%CD8br,and CD39+CD8br%T cell showed a inverse causal relationship with OP,while the IgD-CD38dim%B cell,CD62L-DC%DC,CD8br%leukocyte,CD8br and CD8dim%leukocyte,NKT%T cell,NKT%lymphocyte,HLA DR+CD8br%lymphocyte,and CD3-lymphocyte%leukocyte presented a positive causal relationship with OP.Conclusion:A causality exists between partial immune cell signatures and OP,which provides the clues and directions for exploring the mechanism of action between the immune system and OP.

参考文献/References:

[1] 中华中医药学会.骨质疏松性骨折中医诊疗指南[J].中医正骨,2023,35(1):1-9.
[2] NOH J Y,YANG Y,JUNG H.Molecular mechanisms and emerging therapeutics for osteoporosis[J].Int J Mol Sci,2020,21(20):7623.
[3] GAO Y,PATIL S,JIA J.The development of molecular bi-ology of osteoporosis[J].Int J Mol Sci,2021,22(15):8182.
[4] LISCO G,TRIGGIANI D,GIAGULLI V A,et al.Is there a therapeutic role in natural products?[J]EndocrMetab Immune Disord Drug Targets,2023,23(10):1278-1290.
[5] LI J,CHEN X,LU L,et al.The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis[J].Cytokine Growth Factor Rev,2020,52:88-98.
[6] DING K,HUA F,DING W.Gut microbiome and osteoporosis[J].Aging Dis,2020,11(2):438-447.
[7] ARRON J R,CHOI Y.Bone versus immune system[J].Nature,2000,408(6812):535-536.
[8] ZHANG W,DANG K,HUAI Y,et al.Osteoimmunology:the regulatory roles of T lymphocytes in osteoporosis[J].Front Endocrinol(Lausanne),2020,11:465.
[9] LI S,LIU Q,WU D,et al.PKC-δ deficiency in B cells displays osteopenia accompanied with upregulation of RANKL expression and osteoclast-osteoblast uncoupling[J].Cell Death Dis,2020,11(9):762.
[10] PAUL F,ARKIN Y,GILADI A,et al.Transcriptional heterogeneity and lineage commitment in myeloid progenitors[J].Cell,2015,163(7):1663-1677.
[11] IKEBUCHI Y,AOKI S,HONMA M,et al.Coupling of bone resorption and formation by RANKL reverse signaling[J].Nature,2018,561(7722):195-200.
[12] WANG T,HE C.TNF-α and IL-6:the link between immune and bone system[J].Curr Drug Targets,2020,21(3):213-227.
[13] TANG M,TIAN L,LUO G,et al.Interferon-gamma-mediated osteoimmunology[J].Front Immunol,2018,9:1508.
[14] BIRNEY E.Mendelian randomization[J].Cold Spring Harb Perspect Med,2022,12(4):a041302.
[15] SMITH G D,EBRAHIM S.Mendelian randomization:can genetic epidemiology contribute to understanding environmental determinants of disease?[J].Int J Epidemiol,2003,32(1):1-22.
[16] BOWDEN J,HOLMES M V.Meta-analysis and Mendelian randomization:a review[J].Res Synth Methods,2019,10(4):486-496.
[17] BOEF A G,DEKKERS O M,LE CESSIE S.Mendelian randomization studies:a review of the approaches used and the quality of reporting[J].Int J Epidemiol,2015,44(2):496-511.
[18] ORRÙ V,STERI M,SIDORE C,et al.Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J].Nat Genet,2020,52(10):1036-1045.
[19] KURKI M I,KARJALAINEN J,PALTA P,et al.FinnGen provides genetic insights from a well-phenotyped isolated population[J].Nature,2023,613(7944):508-518.
[20] GAGLIANO TALIUN S A,EVANS D M.Ten simple rules for conducting a mendelian randomization study[J].PLoS Comput Biol,2021,17(8):e1009238.
[21] SEKULA P,DEL GRECO M F,PATTARO C,et al.Mendelian randomization as an approach to assess causality using observational data[J].J Am Soc Nephrol,2016,27(11):3253-3265.
[22] XUE H,CHEN J,ZENG L,et al.Causal relationship between circulating immune cells and the risk of Alzheimer's disease:a Mendelian randomization study[J].Exp Gerontol,2024,187:112371.
[23] PRITCHARD J K,PRZEWORSKI M.Linkage disequilib-rium in humans:models and data[J].Am J Hum Genet,2001,69(1):1-14.
[24] BURGESS S,BUTTERWORTH A,THOMPSON S G.Mendelian randomization analysis with multiple genetic variants using summarized data[J].Genet Epidemiol,2013,37(7):658-665.
[25] BOWDEN J,DEL GRECO M F,MINELLI C,et al.Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression:the role of the I2 statistic[J].Int J Epidemiol,2016,45(6):1961-1974.
[26] BOWDEN J,DAVEY SMITH G,BURGESS S.Mendelian randomization with invalid instruments:effect estimation and bias detection through Egger regression[J].Int J Epidemiol,2015,44(2):512-525.
[27] BURGESS S,THOMPSON S G.Interpreting findings from Mendelian randomization using the MR-Egger method[J].Eur J Epidemiol,2017,32(5):377-389.
[28] STOREY J D,TIBSHIRANI R.Statistical significance for genomewide studies[J].Proc Natl Acad Sci U S A,2003,100(16):9440-9445.
[29] HEMANI G,BOWDEN J,DAVEY SMITH G.Evaluating the potential role of pleiotropy in Mendelian randomization studies[J].Hum Mol Genet,2018,27(R2):R195-R208.
[30] VERBANCK M,CHEN C Y,NEALE B,et al.Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases[J].Nat Genet,2018,50(5):693-698.
[31] GRECO M F D,MINELLI C,SHEEHAN N A,et al.Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome[J].Stat Med,2015,34(21):2926-2940.
[32] BOWDEN J,DEL GRECO M F,MINELLI C,et al.Improving the accuracy of two-sample summary-data Mendelian randomization:moving beyond the NOME assumption[J].Int J Epidemiol,2019,48(3):728-742.
[33] BURGESS S,SMALL D S,THOMPSON S G.A review of instrumental variable estimators for Mendelian randomization[J].Stat Methods Med Res,2017,26(5):2333-2355.
[34] SHRESTHA S,YANG K,GUY C,et al.Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses[J].Nat Immunol,2015,16(2):178-187.
[35] HUYNH A,DUPAGE M,PRIYADHARSHINI B,et al.Control of PI(3)kinase in Treg cells maintains homeostasis and lineage stability[J].Nat Immunol,2015,16(2):188-196.
[36] MAGGI E,COSMI L,LIOTTA F,et al.Thymic regulatory T cells[J].Autoimmun Rev,2005,4(8):579-586.
[37] BIENVENU B,MARTIN B,AUFFRAY C,et al.Peripheral CD8+CD25+T lymphocytes from MHC class Ⅱ-deficient mice exhibit regulatory activity[J].J Immunol,2005,175(1):246-253.
[38] CHURLAUD G,PITOISET F,JEBBAWI F,et al.Human and mouse CD8(+)CD25(+)FOXP3(+)Regulatory T cells at steady state and during interleukin-2 therapy[J].Front Immunol,2015,6:171.
[39] COSMI L,LIOTTA F,LAZZERI E,et al.Human CD8+CD25+thymocytes share phenotypic and functional features with CD4+CD25+regulatory thymocytes[J].Blood,2003,102(12):4107-4014.
[40] WING K,EKMARK A,KARLSSON H,et al.Characterization of human CD25+CD4+T cells in thymus,cord and adult blood[J].Immunology,2002,106(2):190-199.
[41] PENG C,GUO Z,ZHAO Y,et al.Effect of lymphocyte subsets on bone density in senile osteoporosis:a retrospective study[J].J Immunol Res,2022,2022:3337622.
[42] WEITZMANN M N,VIKULINA T,ROSER-PAGE S,et al.Homeostatic expansion of CD4+T cells promotes cortical and trabecular bone loss,whereas CD8+T cells induce trabecular bone loss only[J].J Infect Dis,2017,216(9):1070-1079.
[43] MOESTA A K,LI X Y,SMYTH M J.Targeting CD39 in cancer[J].Nat Rev Immunol,2020,20(12):739-755.
[44] PARODI A,BATTAGLIA F,KALLI F,et al.CD39 is highly involved in mediating the suppression activity of tumor-infiltrating CD8+T regulatory lymphocytes[J].Cancer Immunol Immunother,2013,62(5):851-862.
[45] SCHÄKEL L,MIRZA S,WINZER R,et al.Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39—a promising target for cancer immunotherapy[J].J Immunother Cancer,2022,10(8):e004660.
[46] TIMPERI E,BARNABA V.CD39 regulation and functions in T cells[J].Int J Mol Sci,2021,22(15):8068.
[47] CAO R R,YU X H,XIONG M F,et al.The immune factors have complex causal regulation effects on bone mineral density[J].Front Immunol,2022,13:959417.
[48] CHEN K,CERUTTI A.The function and regulation of immunoglobulin D[J].Curr Opin Immunol,2011,23(3):345-352.
[49] CHEN K,CERUTTI A.New insights into the enigma of immunoglobulin D[J].Immunol Rev,2010,237(1):160-179.
[50] PIEDRA-QUINTERO Z L,WILSON Z,NAVA P,et al.CD38:an immunomodulatory molecule in inflammation and autoimmunity[J].Front Immunol,2020,11:597959.
[51] NIGAM L A,VANIKAR A V,KANODIA K V,et al.Small round tumour cells(CD38,CD 79a positive)in the adrenal gland[J].Urol Case Rep,2017,16:22-24.
[52] BREUIL V,TICCHIONI M,TESTA J,et al.Immune changes in post-menopausal osteoporosis:the Immunos study[J].Osteoporos Int,2010,21(5):805-814.
[53] TILKERIDIS K,KIZIRIDIS G,VERVERIDIS A,et al.Immunoporosis:a new role for invariant natural killer T(NKT)cells through overexpression of nuclear factor-κB ligand(RANKL)[J].Med Sci Monit,2019,25:2151-2158.
[54] MELGAR-RODRÍGUEZ S,CAFFERATA E A,DÍAZ N I,et al.Natural killer T(NKT)cells and periodontitis:potential regulatory role of NKT10 cells[J].Mediators Inflamm,2021,2021:5573937.
[55] WANG X,ZHANG X,HAN Y,et al.Role of the major histocompatibility complex classⅡprotein presentation pathway in bone immunity imbalance in postmenopausal osteoporosis[J].Front Endocrinol(Lausanne),2022,13:876067.
[56] BENASCIUTTI E,MARIANI E,OLIVA L,et al.MHC classⅡtransactivator is an in vivo regulator of osteoclast differentiation and bone homeostasis co-opted from adaptive immunity[J].J Bone Miner Res,2014,29(2):290-303.

相似文献/References:

[1]李林军.应用膨胀式椎弓根螺钉内固定治疗合并骨质疏松的 胸腰椎退行性疾病[J].中医正骨,2015,27(08):49.
[2]韩艳,温利平,刘娜,等.补肾活血方对去卵巢大鼠骨代谢及骨密度的影响[J].中医正骨,2015,27(12):7.
 HAN Yan,WEN Liping,LIU Na,et al.Effect of Bushen Huoxue Fang(补肾活血方)on bone metabolism and bone mineral density in the ovariectomized rats[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(11):7.
[3]李学朋,朱立国.骨疏康胶囊对去卵巢大鼠骨小梁的影响[J].中医正骨,2015,27(12):12.
 LI Xuepeng,ZHU Liguo.Effect of Gushukang Jiaonang(骨疏康胶囊)on bone trabecula in the ovariectomized rats[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(11):12.
[4]陈冠军,陈扬,庄汝杰.可灌注骨水泥椎弓根螺钉系统 在老年腰椎疾患手术中的应用[J].中医正骨,2015,27(02):40.
[5]王丹辉,贲越,韩梅.林蛙油治疗绝经后骨质疏松症的临床研究[J].中医正骨,2014,26(01):27.
 Wang Danhui*,Ben Yue,Han Mei..Clinical study of Rana temporaria oil in the treatment of postmenopausal osteoporosis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2014,26(11):27.
[6]黄建华,黄建武,李慧辉,等.加味左归丸对绝经后骨质疏松症肝肾不足证 患者骨密度的影响[J].中医正骨,2013,25(11):19.
 Huang Jianhua*,Huang Jianwu,Li Huihui,et al.Effect of JIAWEI ZUOGUI pill on bone mineral density in postmenopausal osteoporosis patients with deficiency of liver and kidney[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2013,25(11):19.
[7]项旻,杨虹,林爱菊,等.绝经后2型糖尿病患者骨质疏松与血微量元素的关系研究[J].中医正骨,2013,25(12):20.
 Xiang Min*,Yang Hong,Lin Aiju,et al.Clinical study on the relationship between osteoporosis and serum trace elements levels in postmenopausal women with type 2 diabetes[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2013,25(11):20.
[8]史晓林,李春雯,张志强.弱阳离子磁珠分离技术和基质辅助激光解吸电离飞行时间质谱技术在原发性Ⅰ型骨质疏松症血清标志蛋白筛选中的应用[J].中医正骨,2014,26(03):5.
 Shi Xiaolin*,Li Chunwen,Zhang Zhiqiang..Application of magnetic beads based weak cation exchange separation technology and matrix-assisted laser desorption-ionization time of flight mass spectrometry technology in screening serum protein markers of primary type-Ⅰ osteoporosis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2014,26(11):5.
[9]李明,徐明雄,冯左基,等.自拟壮骨方治疗绝经后骨质疏松症的疗效及作用机制研究[J].中医正骨,2014,26(09):21.
 Li Ming*,Xu Mingxiong,Feng Zuoji,et al.Study on the curative effect and mechanism of action of self-made ZHUANGGU decoction in treatment of postmenopausal osteoporosis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2014,26(11):21.
[10]陈俊杰,李晴晴,夏瑢.脂代谢及血清内脂素水平与绝经后骨质疏松症的 相关性研究[J].中医正骨,2012,24(04):16.
 CHEN Jun-jie*,LI Qing-qing,XIA Rong.*.Study on the correlations between the levels of lipid metabolism and serum visfatin and postmenopausal osteoporosis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2012,24(11):16.

备注/Memo

备注/Memo:
通讯作者:张洪美 E-mail:824411547@qq.com
更新日期/Last Update: 1900-01-01