[1]邓真,王辉昊,王宽,等.C2~T1三维有限元模型的建立和验证[J].中医正骨,2016,28(10):1-6.
 DENG Zhen,WANG Huihao,WANG Kuan,et al.Establishment and verification of three-dimensional finite element model of C2-T1 vertebrae[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(10):1-6.
点击复制

C2~T1三维有限元模型的建立和验证()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第28卷
期数:
2016年10期
页码:
1-6
栏目:
基础研究
出版日期:
2016-10-20

文章信息/Info

Title:
Establishment and verification of three-dimensional finite element model of C2-T1 vertebrae
作者:
邓真王辉昊王宽兰天鹰牛文鑫詹红生
上海中医药大学附属曙光医院,上海 201203
Author(s):
DENG ZhenWANG HuihaoWANG KuanLAN TianyingNIU WenxinZHAN Hongsheng
Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China
关键词:
颈椎 有限元分析 活动度 应力分布
Keywords:
cervical vertebrae finite element analysis range of motion stress distribution
摘要:
目的:建立人体C2~T1三维有限元模型并进行验证。方法:采集1位健康男性志愿者的颈部CT图像,依次采用Mimics 17.0医学图像处理软件、Geomagic 12.0逆向工程软件及Abaqus 6.13有限元分析软件建立C2~T1三维有限元模型。约束T1下终板所有节点的全部6个自由度作为边界条件,在齿状突顶点上2 mm处建立参考点,将其与C2齿状突所有单元节点耦合。对参考点分别施加±0.5 Nm、±1 Nm、±1.5 Nm、±2 Nm扭矩,模拟颈椎前屈、后伸、左右旋转、左右侧弯6种运动状态,计算不同条件下颈椎各节段活动度,与以往离体实验和有限元实验结果进行比较,同时观察各种运动状态下模型的应力分布情况。结果:建立的三维有限元模型模拟了C2~T1共7个椎体、6个椎间盘、5种韧带、6组关节软骨及上下终板,涉及60 459个单元、128 473个节点。模型在前屈、后伸、左右旋转、左右侧弯6种状态下的活动度与文献中的研究数据基本一致,应力分布与正常颈椎活动时的情况一致。结论:本研究建立的C2~T1三维有限元模型较为真实地模拟了正常颈椎的几何形态和材料属性,能够较为准确地反映正常颈椎的生物力学特性。
Abstract:
Objective:To build and validate a three-dimensional finite element(FE)model of human C2-T1 vertebrae.Methods:The neck CT image of one healthy male volunteer was collected,then the C2-T1 three-dimensional FE model was built by using Mimics 17.0 medical image processing software,Geomagic 12.0 reverse engineering software and Abaqus 6.13 finite element analysis software in turn.Six degrees of freedom of all nodes in inferior endplate of T1 vertebrae were restrained and it was used as boundary condition.The reference point was built at 2 mm above the culminated point of odontoid process and was coupled with all unit nodes of C2 odontoid process.The torques(+/-0.5,+/-1,+/-1.5,and +/-2 Nm,respectively)were applied to the reference point to simulate 6 kinds of motion of cervical vertebra,included anteflexion,backward extension,left-right rotation and left-right lateral flexion.The range of motion(ROM)of each segment of cervical vertebrae in different states of motion were calculated,and then the results were compared with those results of previous in vitro experiment and finite element experiment.Meanwhile,the stress distribution of the model in each state of motion was observed.Results:Seven vertebraes,six intervertebral disks,five kinds of ligaments and six groups of articular cartilage and endplates of C2-T1 were simulated by the three-dimensional FE model,which included 60 459 units and 128 473 nodes.The ROM of the model in 6 kinds of states of motion,including anteflexion,backward extension,left-right rotation and left-right lateral flexion,were basically consistent with the literature data.The stress distribution of the model was consistent with that of cervical spine in normal activities.Conclusion:The three dimensional FE model of C2-T1 vertebrae that we build in this study can literally simulate the geometric configuration and material attribute of normal cervical vertebrae and accurately reflect the biomechanical characteristics of normal cervical vertebrae.

参考文献/References:

[1] 柯尊华,王静怡.颈椎病流行病学及发病机理研究进展[J].颈腰痛杂志,2014,35(1):62-64.
[2] 李韵,贺西京.有限元分析在脊柱生物力学领域的应用[J].生物医学工程学杂志,2001,18(2):288-289.
[3] 原芳,薛清华,刘伟强.有限元法在脊柱生物力学应用中的新进展[J].医用生物力学,2013,28(5):585-590.
[4] Bozic KJ,Keyak JH,Skinner HB,et al.Three-dimensional finite element modeling of a cervical vertebra:an investigation of burst fracture mechanism[J].J Spinal Disord,1994,7(2):102-110.
[5] Yoganandan N,Kumaresan SC,Voo LM,et al.Finite element modeling of the C4-C6 cervical spine unit[J].Med Eng Phys,1996,18(7):569-574.
[6] Yoganandan N,Kumaresan S,Pintar FA.Biomechanics of the cervical spine Part 2.Cervical spine soft tissue responses and biomechanical modeling[J].Clin Biomech(Bristol, Avon),2001,16(1):1-27.
[7] Carlesso LC,Macdermid JC,Santaguida P.Determining adverse events in patients with neck pain receiving orthopaedic manual physiotherapy:a pilot and feasibility study[J].Physiother Can,2013,65(3):255-265.
[8] Hurwitz EL,Carragee EJ,Van Der Velde G,et al.Treatment of neck pain: Noninvasive interventions - Results of the bone and joint decade 2000-2010 task force on neck pain and its associated disorders[J].Spine(Phila Pa 1976),2008,33(4, S):S123-S152.
[9] Yoganandan N,Kumaresan S,Pintar FA.Geometric and mechanical properties of human cervical spine ligaments[J].J Biomech Eng,2000,122(6):623-629.
[10] Panjabi MM,Oxland T,Takata K,et al.Articular facets of the human spine.Quantitative three-dimensional anatomy[J].Spine(Phila Pa 1976),1993,18(10):1298-1310.
[11] Goel VK,Clausen JD.Prediction of load sharing among spinal components of a C5-C6 motion segment using finite element approach[J].Spine(Phila Pa 1976),1998,23(6):684-691.
[12] Zhang QH,Teo EC,Ng HW,et al.Finite element analysis of moment-rotation relationships for human cervical spine[J].J Biomech,2006,39(1):189-193.
[13] Panzer MB,Fice JB,Cronin DS.Cervical spine response in frontal crash[J].Med Eng Phys,2011,33(9):1147-1159.
[14] Wheeldon JA,Pintar FA,Knowles S,et al.Experimental flexion/extension data corridors for validation of finite element models of the young,normal cervical spine[J].J Biomech,2006,39(2):375-380.
[15] Nightingale RW,Carol Chancey V,Ottaviano D,et al.Flexion and extension structural properties and strengths for male cervical spine segments[J].J Biomech,2007,40(3):535-542.
[16] Nightingale RW,Winkelstein BA,Knaub KE,et al.Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension[J].J Biomech,2002,35(6):725-732.
[17] Panjabi MM,Crisco JJ,Vasavada A,et al.Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves[J].Spine(Phila Pa 1976),2001,26(24):2692-2700.
[18] Moroney SP,Schultz AB,Miller JA,et al.Load-displacement properties of lower cervical spine motion segments[J].J Biomech,1988,21(9):769-779.
[19] Lysell E.Motion in the cervical spine.An experimental study on autopsy specimens[J].Acta Orthop Scand, 1969:40(sup-123):1-61.
[20] Kallemeyn N,Gandhi A,Kode S,et al.Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data[J].Med Eng Phys,2010,32(5):482-489.
[21] Hussain M,Natarajan RN,Fayyazi AH,et al.Screw angulation affects bone-screw stresses and bone graft load sharing in anterior cervical corpectomy fusion with a rigid screw-plate construct:a finite element model study[J].Spine J,2009,9(12):1016-1023.
[22] Del Palomar AP,Calvo B,Doblare M.An accurate finite element model of the cervical spine under quasi-static loading[J].J Biomech,2008,41(3):523-531.
[23] Erbulut DU,Zafarparandeh I,Lazoglu I,et al.Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability[J].Med Eng Phys,2014,36(7):915-921.
[24] Panjabi MM,Nibu K,Cholewicki J.Whiplash injuries and the potential for mechanical instability[J].Eur Spine J,1998,7(6):484-492.
[25] Goel VK,Clark CR,Gallaes K,et al.Moment-rotation relationships of the ligamentous occipito-atlanto-axial complex[J].J Biomech,1988,21(8):673-680.
[26] Stemper BD,Yoganandan N,Pintar FA.Effects of abnormal posture on capsular ligament elongations in a computational model subjected to whiplash loading[J].J Biomech,2005,38(6):1313-1323.
[27] 张宇宸,李颉,牛文鑫,等.人工颈椎间盘置换对多节段下颈椎活动影响的三维有限元分析[J].中华医学杂志,2008,88(17):1214-1216.
[28] 王辉昊,沈知彼,邓真,等.人体全颈椎及椎动脉流固耦合模型的构建[J].浙江大学学报:医学版,2015,44(2):131-137.

相似文献/References:

[1]刘建航,陈道云,黄勇,等.手法治疗颈源性头痛临床疗效的Meta分析[J].中医正骨,2016,28(01):28.
 LIU Jianhang,CHEN Daoyun,HUANG Yong,et al.A meta analysis on the clinical curative effect of manipulation on cervical headache[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(10):28.
[2]梅伟,高晓群.前路复位椎间植骨融合内固定术治疗 单节段下颈椎骨折脱位合并关节突交锁[J].中医正骨,2016,28(03):42.
[3]孙兰芬,王龙强,刘润宏,等.颈椎骨折脱位合并脊髓损伤截瘫患者的围手术期护理[J].中医正骨,2016,28(03):79.
[4]孙旗,吴齐飞,郑晨颖,等.颈椎前路手术后咽痛的防治进展[J].中医正骨,2016,28(05):22.
[5]毕 锴.颈椎手法常见高危禁忌证的X线诊断[J].中医正骨,2016,28(08):73.
[6]叶宜颖,高景华,高春雨.有限元分析法在脊柱推拿手法生物力学研究中的应用[J].中医正骨,2016,28(10):29.
[7]杨鹏,魏秋实,陈镇秋,等.基于多模态图像配准技术构建半骨盆全髋关节有限元模型[J].中医正骨,2017,29(05):1.
 YANG Peng,WEI Qiushi,CHEN Zhenqiu,et al.Construction of finite element models of hemipelvis and total hip joint using multi-modality image registration technique[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(10):1.
[8]陈海龙,郑九琴,朱文潇,等.常规颅骨牵引和全身麻醉下手法复位在下颈椎脱位前路减压植骨融合内固定术中的应用[J].中医正骨,2017,29(07):74.
[9]邓真,王辉昊,王宽,等.石氏伤科颈椎定位旋转扳法的动力学参数在体测量[J].中医正骨,2018,30(03):17.
 DENG Zhen,WANG Huihao,WANG Kuan,et al.In vivo measurement of kinetic parameters of cervical fixed-position rotary pulling manipulation of Shi's department of traumatology[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(10):17.
[10]王浩,陈佳丽,钱桑.范炳华教授诊治3种常见颈椎生理结构异常的经验[J].中医正骨,2018,30(03):56.
[11]沈知彼,王辉昊,王宽,等.颈椎定位旋转扳法对不同曲度颈椎内部结构应力的影响[J].中医正骨,2018,30(03):8.
 SHEN Zhibi,WANG Huihao,WANG Kuan,et al.Effect of cervical fixed-position rotary pulling manipulation on internal structure stresses of cervical vertebrae with different curvature[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(10):8.
[12]张明才,陈博,石印玉,等.颈椎单节椎体平移错缝对颈椎主要结构应力影响的有限元分析[J].中医正骨,2020,32(04):1.
 ZHANG Mingcai,CHEN Bo,SHI Yinyu,et al.Influence of translational dislocation of single-segment cervical vertebral body on the stresses of main structures of cervical vertebra:a finite element analysis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2020,32(10):1.
[13]林福,付坤飞,全仁夫.有限元法在颈椎生物力学研究中的应用进展[J].中医正骨,2021,33(06):60.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(81473702,81503596); “中医骨伤科学”国家重点学科项目(100508); 上海市中医药领军人才建设项目(2012-63-15); 上海领军人才项目(041); “海派中医流派传承研究基地”项目(ZYSNXD-CC-HPGC-JD-001,ZY3-CCCX-1-1003); 上海市中医药事业发展三年行动计划项目(ZYSNXD-CC-ZDYJ047)
通讯作者:詹红生 E-mail:zhanhongsheng2010@163.com
更新日期/Last Update: 2016-10-20