[1]杨鹏,魏秋实,陈镇秋,等.基于多模态图像配准技术构建半骨盆全髋关节有限元模型[J].中医正骨,2017,29(05):1-6.
 YANG Peng,WEI Qiushi,CHEN Zhenqiu,et al.Construction of finite element models of hemipelvis and total hip joint using multi-modality image registration technique[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(05):1-6.
点击复制

基于多模态图像配准技术构建半骨盆全髋关节有限元模型()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第29卷
期数:
2017年05期
页码:
1-6
栏目:
基础研究
出版日期:
2017-05-20

文章信息/Info

Title:
Construction of finite element models of hemipelvis and total hip joint using multi-modality image registration technique
作者:
杨鹏魏秋实陈镇秋王鼎陈达何伟张庆文
广州中医药大学第一附属医院,广东 广州 510405
Author(s):
YANG PengWEI QiushiCHEN ZhenqiuWANG DingCHEN DaHE WeiZHANG Qingwen
The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine,Guangzhou 510405,Guangdong,China
关键词:
髋关节 有限元分析 图像配准
Keywords:
Key words hip joint finite element analysis image registration
摘要:
目的:基于多模态图像配准技术利用CT、MRI图像建立半骨盆全髋关节有限元模型。方法:采集1位健康女性志愿者同一体位下的CT和MRI图像,以DICOM格式保存。先采用Mimics16.0医学影像软件和Geomagic-Studio11逆向工程软件以CT数据建立髂骨、股骨骨性三维模型,再利用Solidworks软件将骨性三维模型与MRI图像进行配准融合,重建与之匹配的髋臼软骨和股骨头表面软骨三维模型,并在模型上标记髋关节周围韧带、肌肉附着点。将数据导入Abaqus6.14软件建立半骨盆全髋关节有限元模型,分析模拟双腿站立位单侧髋关节受力情况下(1.6倍体重,800 N)髋关节应力分布情况。结果:建立的半骨盆全髋关节三维有限元模型,包含髂骨和股骨近端的皮质骨、松质骨、关节软骨、韧带和肌肉共5部分三维子模型,涉及122 363个单元、216 149个节点。在800 N载荷下,髋关节应力大小和分布与以往研究结果相近。结论:基于多模态图像配准技术利用CT、MRI图像建立的半骨盆全髋关节有限元模型,能很好地模拟髋部骨骼、软骨的形态,并较为真实地反映髋关节的力学性能,具有一定的科研及临床价值。
Abstract:
ABSTRACT Objective:To build the finite element models of hemipelvis and total hip joint by using multi-modality image registration technique with CT and MRI images.Methods:The CT and MRI images of a healthy female volunteer were collected in the same body position and were saved in DICOM format.A osseous three-dimensional model of ilium and femur was built by using Mimics 16.0 medical image software and Geomagic-Studio 11 reverse engineering software and it was based on CT data.Then the osseous three-dimensional model image and MRI images were matched and fused by using Solidworks software to rebuild the matched three-dimensional model of acetabular cartilage and femoral head cartilage.The attachment points of ligaments and muscles around the hip joint were marked on the model.The Data were imported into the Abaqus 6.14 software and a finite element model of hemipelvis and total hip joint was obtained.The stress distribution of unilateral hip joint in analogic standing position(1.6 times of bodyweight,800 N)was analyzed.Results:The three-dimensional finite element model of hemipelvis and total hip joint consists of 5 three-dimensional submodels,including ilium and proximal femoral cortical bones,cancellous bones,articular cartilages,ligaments and muscles,and involved 122 363 units and 216 149 nodes.The stress value and stress distribution of hip joint at the load of 800 N were similar to previous research results.Conclusion:The finite element model of hemipelvis and total hip joint built by using multi-modality image registration technique with CT and MRI images can correctly simulate the morphology of hip bone and cartilage,and it can literally reflect the hip mechanical properties of hip joint,so it has some values in scientific research and clinic.

参考文献/References:

[1] MADETI BK,CHALAMALASETTI SR,BOLLA PRAGADA S.Biomechanics of knee joint:A review[J].Frontiers of Mechanical Engineering,2015,10(2):176-186.
[2] BREKELMANS WA,POORT HW,SLOOFF TJ.A new method to analyse the mechanical behaviour of skeletal parts[J].Acta Orthop Scand,1972,43(5):301-317.
[3] PIEROH P,SCHNEIDER S,LINGSLEBE U,et al.The Stress-strain data of the hip capsule ligaments are gender and side Independent suggesting a smaller contribution to passive stiffness[J].PLoS One,2016,11(9):e0163306.
[4] GRECU D,PUCALEV I,NEGRU M,et al.Numerical simulations of the 3D virtual model of the human hip joint, using finite element method[J].Rom J Morphol Embryol,2010,51(1):151-155.
[5] SVERDLOVA NS,WITZEL U.Principles of determination and verification of muscle forces in the human musculoskeletal system:Muscle forces to minimise bending stress[J].J Biomech,2010,43(3):387-396.
[6] BROWN TD,PEDERSEN DR,BAKER KJ,et al.Mechanical Consequences of core drilling and bone-grafting on osteonecrosis of the femoral head[J].J Bone Joint Surg Am,1993,75(9):1358-1367.
[7] ZHOU GQ,PANG ZH,CHEN QQ,et al.Reconstruction of the biomechanical transfer path of femoral head necrosis:a subject-specific finite element investigation[J].Comput Biol Med,2014,52:96-101.
[8] CHEN GX,YANG L,LI K,et al.A three-dimensional finite element model for biomechanical analysis of the hip[J].Cell Biochem Biophys,2013,67(2):803-808.
[9] 王沫楠,安贤俊.髋关节表面接触应力数学模型的建立及验证[J].中南大学学报(自然科学版),2015,46(6):2081-2089.
[10] NG K,LAMONTAGNE M,LABROSSE MR.Hip joint stresses due to Cam-Type femoroacetabular impingement:a systematic review of finite element simulations[J].PLoS One,2016,11(1):e0147813.
[11] JORGE JP,SIMÖES FM,PIRES EB,et al.Finite element simulations of a hip joint with femoroacetabular impingement[J].Comput Methods Biomech Biomed Engin,2014,17(11):1275-1284.
[12] BONARETTI S,SEILER C,BOICHON C,et al.Image-based vs.mesh-based statistical appearance models of the human femur:implications for finite element simulations[J].Med Eng Phys,2014,36(12):1626-1635.
[13] TAYLOR M,PRENDERGAST PJ.Four decades of finite element analysis of orthopaedic devices:where are we now and what are the opportunities?[J].J Biomech,2015,48(5):767-778.
[14] KLING-PETERSEN T,RYDMARK M.Modeling and modification of medical 3D objects.The benefit of using a haptic modeling tool[J].Stud Health Technol Inform,2000,70:162-167.
[15] ESCOTT EJ,RUBINSTEIN D.Free DICOM image viewing and processing software for your desktop computer:what's available and what it can do for you[J].Radiographics,2003,23(5):1341-1357.
[16] 傅栋,靳安民.应用 CT 断层图像快速构建人体骨骼有限元几何模型的方法[J].中国组织工程研究与临床康复,2007,11(9):1620-1623.
[17] 张俊杰,周涛,陆惠玲,等.特征级多模态医学图像融合技术的研究与进展[J].生物医学工程学杂志,2016,33(2):394-399.
[18] SHEKHAR R.MO-DE-202-04:Multimodality Image-Guided Surgery and Intervention:For the Rest of Us [J].Med Phys,2016,43(6):3699-3700.
[19] CHRISTENSEN G.WE-H-202-04:advanced medical image registration techniques[J].Med Phys,2016,43(6):3845-3845.

相似文献/References:

[1]邓真,王辉昊,王宽,等.C2~T1三维有限元模型的建立和验证[J].中医正骨,2016,28(10):1.
 DENG Zhen,WANG Huihao,WANG Kuan,et al.Establishment and verification of three-dimensional finite element model of C2-T1 vertebrae[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(05):1.
[2]叶宜颖,高景华,高春雨.有限元分析法在脊柱推拿手法生物力学研究中的应用[J].中医正骨,2016,28(10):29.
[3]沈知彼,王辉昊,王宽,等.颈椎定位旋转扳法对不同曲度颈椎内部结构应力的影响[J].中医正骨,2018,30(03):8.
 SHEN Zhibi,WANG Huihao,WANG Kuan,et al.Effect of cervical fixed-position rotary pulling manipulation on internal structure stresses of cervical vertebrae with different curvature[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2018,30(05):8.
[4]彭小东,张晓刚,赵文韬,等.有限元分析在过伸复位治疗骨质疏松性椎体压缩性骨折生物力学研究中的应用进展[J].中医正骨,2018,30(07):25.
[5]张明才,陈博,石印玉,等.颈椎单节椎体平移错缝对颈椎主要结构应力影响的有限元分析[J].中医正骨,2020,32(04):1.
 ZHANG Mingcai,CHEN Bo,SHI Yinyu,et al.Influence of translational dislocation of single-segment cervical vertebral body on the stresses of main structures of cervical vertebra:a finite element analysis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2020,32(05):1.
[6]林福,付坤飞,全仁夫.有限元法在颈椎生物力学研究中的应用进展[J].中医正骨,2021,33(06):60.
[7]杨静,刘玉珂,郭会利,等.99mTc-MDP SPECT/CT在凸轮型髋关节撞击综合征诊断中的应用价值[J].中医正骨,2022,34(02):66.
[8]金帅捷,吕帅洁,汪小健,等.反映学术进展 引领学科发展粘连性髋关节囊炎的研究进展[J].中医正骨,2022,34(06):39.
[9]丘明旺,孙玫瑶,吴耿佳,等.腰椎立体定位斜扳法与传统腰椎斜扳法对椎间盘及关节突关节软骨影响的有限元分析[J].中医正骨,2024,36(1):14.
 QIU Mingwang,SUN Meiyao,WU Gengjia,et al.Effects of lumbar stereotaxic oblique-pulling manipulation versus traditional oblique-pulling manipulation on lumbar intervertebral discs and articular cartilage of lumbar zygapophysial joints:a finite element analysis-based biomechanical study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2024,36(05):14.

更新日期/Last Update: 2017-05-20