[1]陈瑞楠,陈国茜,刘迅,等.软骨和软骨下骨与膝骨关节炎关系的研究进展[J].中医正骨,2023,35(03):55-60.
点击复制

软骨和软骨下骨与膝骨关节炎关系的研究进展()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第35卷
期数:
2023年03期
页码:
55-60
栏目:
综述
出版日期:
2023-03-20

文章信息/Info

作者:
陈瑞楠1陈国茜2刘迅2章建华2田园1
(1.浙江中医药大学第一临床医学院,浙江 杭州 310053; 2.浙江省中医院,浙江 杭州 310006)
关键词:
骨关节炎 软骨 软骨下骨 软骨-软骨下骨复合体 综述
摘要:
膝骨关节炎(knee osteoarthritis,KOA)的发生、发展涉及膝关节周围的多种组织病变,包括软骨的退变、软骨下骨的重建和二者构成的软骨-软骨下骨复合体间的异常分子交互。本文阐述了膝关节软骨、软骨下骨及软骨-软骨下骨复合体与KOA的关系,并介绍了目前检测软骨和软骨下骨早期损伤的新技术,以期为从膝关节软骨和软骨下骨角度防治KOA提供新的思路。

参考文献/References:

[1] 中国中医药研究促进会骨伤科分会.膝骨关节炎中医诊疗指南(2020年版)[J].中医正骨,2020,32(10):1-14.
[2] SHARMA L.Osteoarthritis of the knee[J].N Engl J Med,2021,384(1):51-59.
[3] HUNTER D J,SCHOFIELD D,CALLANDER E.The individual and socioeconomic impact of osteoarthritis[J].Nat Rev Rheumatol,2014,10(7):437-441.
[4] JIANG A,XU P,SUN S,et al.Cellular alterations and crosstalk in the osteochondral joint in osteoarthritis and promising therapeutic strategies[J].Connect Tissue Res,2021,62(6):709-719.
[5] CAO Y,STANNUS O P,AITKEN D,et al.Cross-sectional and longitudinal associations between systemic,subchondral bone mineral density and knee cartilage thickness in older adults with or without radiographic osteoarthritis[J].Ann Rheum Dis,2014,73(11):2003-2009.
[6] MARTEL-PELLETIER J,BARR A J,CICUTTINI F M,et al.Osteoarthritis[J].Nat Rev Dis Primers,2016,2:16072.
[7] XIA B,CHEN D,ZHANG J,et al.Osteoarthritis pathogenesis:a review of molecular mechanisms[J].Calcif Tissue Int,2014,95(6):495-505.
[8] GOLDRING S R,GOLDRING M B.Changes in the osteochondral unit during osteoarthritis:structure,function and cartilage-bone crosstalk[J].Nat Rev Rheumatol,2016,12(11):632-644.
[9] CARBALLO C B,NAKAGAWA Y,SEKIYA I,et al.Basic science of articular cartilage[J].Clin Sports Med,2017,36(3):413-425.
[10] GOLDRING M B,MARCU K B.Cartilage homeostasis in health and rheumatic diseases[J].Arthritis Res Ther,2009,11(3):224.
[11] VERZIJL N,DEGROOT J,THORPE S R,et al.Effect of collagen turnover on the accumulation of advanced glycation end products[J].J Biol Chem,2000,275(50):39027-39031.
[12] GREENE G W,BANQUY X,LEE D W,et al.Adaptive mechanically controlled lubrication mechanism found in articular joints[J].Proc Natl Acad Sci USA,2011,108(13):5255-5259.
[13] IMHOF H,SULZBACHER I,GRAMPP S,et al.Subchondral bone and cartilage disease:a rediscovered functional unit[J].Invest Radiol,2000,35(10):581-588.
[14] HEINEGÅRD D,SAXNE T.The role of the cartilage matrix in osteoarthritis[J].Nat Rev Rheumatol,2011,7(1):50-56.
[15] ANDRIACCHI T P,FAVRE J.The nature of in vivo mechanical signals that influence cartilage health and progre-ssion to knee osteoarthritis[J].Curr Rheumatol Rep,2014,16(11):463.
[16] GUO H,MAHER S A,TORZILLI P A.A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression[J].J Biomech,2015,48(1):166-170.
[17] ALEXANDER L C Jr,MCHORSE G,HUEBNER J L,et al.A matrix metalloproteinase-generated neoepitope of CRP can identify knee and multi-joint inflammation in osteoar-thritis[J].Arthritis Res Ther,2021,23(1):226.
[18] WANG L,PI C,SUN J,et al.The alteration of a disintegrin and metalloproteinase with thrombospondin motifs(ADAMTS)in the knee joints of osteoarthritis mice[J].J Histotechnol,2021,44(2):99-110.
[19] ZHAO Q H,LIN L P,GUO Y X,et al.Matrix metalloproteinase-13,NF-κB p65 and interleukin-1β are associated with the severity of knee osteoarthritis[J].Exp Ther Med,2020,19(6):3620-3626.
[20] MATHIESSEN A,CONAGHAN P G.Synovitis in osteoarthritis:current understanding with therapeutic impli-cations[J].Arthritis Res Ther,2017,19(1):18.
[21] KOH S M,CHAN C K,TEO S H,et al.Elevated plasma and synovial fluid interleukin-8 and interleukin-18 may be associated with the pathogenesis of knee osteoarthritis[J].Knee,2020,27(1):26-35.
[22] RUAN G,XU J,WANG K,et al.Associations between knee structural measures,circulating inflammatory factors and MMP13 in patients with knee osteoarthritis[J].Osteoarthritis Cartilage,2018,26(8):1063-1069.
[23] LI S H,WU Q F.MicroRNAs target on cartilage extracellular matrix degradation of knee osteoarthritis[J].Eur Rev Med Pharmacol Sci,2021,25(3):1185-1197.
[24] RUAN G,XU J,WANG K,et al.Associations between serum S100A8/S100A9 and knee symptoms,joint structures and cartilage enzymes in patients with knee osteoarthritis[J].Osteoarthritis Cartilage,2019,27(1):99-105.
[25] BURR D B.Anatomy and physiology of the mineralized ti-ssues:role in the pathogenesis of osteoarthrosis[J].Osteoarthritis Cartilage,2004,12(Suppl A):S20-S30.
[26] BURR D B,GALLANT M A.Bone remodelling in osteoarthritis[J].Nat Rev Rheumatol,2012,8(11):665-673.
[27] GOLDRING S R.The role of bone in osteoarthritis pathogenesis[J].Rheum Dis Clin North Am,2008,34(3):561-571.
[28] PLOTKIN L I,GORTAZAR A R,DAVIS H M,et al.Inhibition of osteocyte apoptosis prevents the increase in osteocy-tic receptor activator of nuclear factor κB ligand(RANKL)but does not stop bone resorption or the loss of bone induced by unloading[J].J Biol Chem,2015,290(31):18934-18942.
[29] CABAHUG-ZUCKERMAN P,FRIKHA-BENAYED D,MAJESKA R J,et al.Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte rankl production and subsequent resorption of cortical and trabecular bone in mice femurs[J].J Bone Miner Res,2016,31(7):1356-1365.
[30] FAIBISH D,OTT S M,BOSKEY A L.Mineral changes in osteoporosis:a review[J].Clin Orthop Relat Res,2006,443:28-38.
[31] DAY J S,VAN DER LINDEN J C,BANK R A,et al.Adaptation of subchondral bone in osteoarthritis[J].Biorheology,2004,41(3/4):359-368.
[32] DAI G,XIAO H,LIAO J,et al.Osteocyte TGFβ1-Smad2/3 is positively associated with bone turnover parameters in subchondral bone of advanced osteoarthritis[J].Int J Mol Med,2020,46(1):167-178.
[33] BOWES M A,MCLURE S W,WOLSTENHOLME C B,et al.Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage:a 3D study using data from the osteoarthritis initiative[J].Ann Rheum Dis,2016,75(10):1852-1857.
[34] FELL N,LAWLESS B M,COX S C,et al.The role of subchondral bone,and its histomorphology,on the dynamic viscoelasticity of cartilage,bone and osteochondral cores[J].Osteoarthritis Cartilage,2019,27(3):535-543.
[35] IMHOF H,BREITENSEHER M,KAINBERGER F,et al.Importance of subchondral bone to articular cartilage in health and disease[J].Top Magn Reson Imaging,1999,10(3):180-192.
[36] INTEMA F,HAZEWINKEL H A,GOUWENS D,et al.In early OA,thinning of the subchondral plate is directly related to cartilage damage:results from a canine ACLT-meniscectomy model[J].Osteoarthritis Cartilage,2010,18(5):691-698.
[37] AIZAH N,CHONG P P,KAMARUL T.Early alterations of subchondral bone in the rat anterior cruciate ligament transection model of osteoarthritis[J].Cartilage,2021,13(2 suppl):1322S-1333S.
[38] POURAN B,ARBABI V,BLEYS R L,et al.Solute transport at the interface of cartilage and subchondral bone plate:effect of micro-architecture[J].J Biomech,2017,52:148-154.
[39] MALININ T,OUELLETTE E A.Articular cartilage nutrition is mediated by subchondral bone:a long-term autograft study in baboons[J].Osteoarthritis Cartilage,2000,8(6):483-491.
[40] YUAN X L,MENG H Y,WANG Y C,et al.Bone-cartilage interface crosstalk in osteoarthritis:potential pathways and future therapeutic strategies[J].Osteoarthritis Cartilage,2014,22(8):1077-1089.
[41] MAPP P I,WALSH D A.Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis[J].Nat Rev Rheumatol,2012,8(7):390-398.
[42] ZHANG L,WANG P E,YING J,et al.Yougui Pills atten-uate cartilage degeneration via activation of TGF-β/Smad signaling in chondrocyte of osteoarthritic mouse model[J].Front Pharmacol,2017,8:611.
[43] ZHAO W,WANG T,LUO Q,et al.Cartilage degeneration and excessive subchondral bone formation in spontaneous osteoarthritis involves altered TGF-β signaling[J].J Orthop Res,2016,34(5):763-770.
[44] JIA C,LI X,PAN J,et al.Silencing of angiopoietin-like protein 4(Angptl4)decreases inflammation,extracellular matrix degradation,and apoptosis in osteoarthritis via the sirtuin 1/NF-κB pathway[J].Oxid Med Cell Longev,2022,2022:1135827.
[45] YANG G,WANG K,SONG H,et al.Celastrol ameliorates ost-eoarthritis via regulating TLR2/NF-κB signaling pathway[J].Front Pharmacol,2022,13:963506.
[46] WU Z,WANG Y,YAN G,et al.Eugenol protects chondrocytes and articular cartilage by downregulating the JAK3/STAT4 signaling pathway[J/OL].J Orthop Res,2022[2022-08-01].https://pubmed.ncbi.nlm.nih.gov/35880357.
[47] ZHANG W,ZHENG X,GONG Y,et al.VX-11e protects articular cartilage and subchondral bone in osteoarthritis by inhibiting the RIP1/RIP3/MLKL and MAPK signaling pathways[J].Bioorg Chem,2022,120:105632.
[48] GUO H,DING D,WANG L,et al.Metformin attenuates osteoclast-mediated abnormal subchondral bone remodeling and alleviates osteoarthritis via AMPK/NF-κB/ERK signaling pathway[J].PLoS One,2021,16(12):e0261127.
[49] DING X,XIANG W,MENG D,et al.Osteoblasts regulate the expression of ADAMTS and MMPs in chondrocytes through ERK signaling pathway[J/OL].Z Orthop Unfall,2021[2022-08-01].https://pubmed.ncbi.nlm.nih.gov/34500490.
[50] XU Y,GU Y,JI W,et al.Activation of the extracellular-signal-regulated kinase(ERK)/c-Jun N-terminal kinase(JNK)signal pathway and osteogenic factors in subchondral bone of patients with knee osteoarthritis[J].Ann Transl Med,2021,9(8):663.
[51] LIU Y,XU S,ZHANG H,et al.Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis[J].Cell Death Dis,2021,12(5):448.
[52] SHAO M,LV D,ZHOU K,et al.Senkyunolide a inhibits the progression of osteoarthritis by inhibiting the NLRP3 signalling pathway[J].Pharm Biol,2022,60(1):535-542.
[53] LV S,WANG X,JIN S,et al.Quercetin mediates TSC2-RHEB-mTOR pathway to regulate chondrocytes autophagy in knee osteoarthritis[J].Gene,2022,820:146209.
[54] CHEN Z,ZHAO C,LIU P,et al.Anti-apoptosis and auto-phagy effects of melatonin protect rat chondrocytes against oxidative stress via regulation of AMPK/Foxo3 pathways[J].Cartilage,2021,13(2 suppl):1041S-1053S.
[55] XU K,HE Y,MOQBEL S,et al.SIRT3 ameliorates osteoarthritis via regulating chondrocyte autophagy and apoptosis through the PI3K/Akt/mTOR pathway[J].Int J Biol Macromol,2021,175:351-360.
[56] LI Z,HUANG Z,ZHANG H,et al.P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 Crosstalk[J].Oxid Med Cell Longev,2021,2021:8868361.
[57] XU J,PEI Y,LU J,et al.LncRNA SNHG7 alleviates IL-1β-induced osteoarthritis by inhibiting miR-214-5p-mediated PPARGC1B signaling pathways[J].Int Immunopharmacol,2021,90:107150.
[58] LI B,JING L,JIA L,et al.Acupuncture reduces pain in rats with osteoarthritis by inhibiting MCP2/CCR2 signaling pathway[J].Exp Biol Med(Maywood),2020,245(18):1722-1731.
[59] LO W C,DUBEY N K,TSAI F C,et al.Amelioration of ni-cotine-induced osteoarthritis by platelet-derived biomaterials through modulating IGF-1/AKT/IRS-1 signaling axis[J].Cell Transplant,2020,29:963689720947348.
[60] LI X,MEI W,HUANG Z,et al.Casticin suppresses monoiodoacetic acid-induced knee osteoarthritis through inhibiting HIF-1α/NLRP3 inflammasome signaling[J].Int Immunopharmacol,2020,86:106745.
[61] KRETZSCHMAR M,NEVITT M C,SCHWAIGER B J,et al.Spatial distribution and temporal progression of T2 relaxation time values in knee cartilage prior to the onset of cartilage lesions-data from the osteoarthritis initiative(OAI)[J].Osteoarthritis Cartilage,2019,27(5):737-745.
[62] MADELIN G,XIA D,BROWN R,et al.Longitudinal study of sodium MRI of articular cartilage in patients with knee osteoarthritis:initial experience with 16-month follow-up[J].Eur Radiol,2018,28(1):133-142.
[63] JENA A,TANEJA S,RANA P,et al.Emerging role of integrated PET-MRI in osteoarthritis[J].Skeletal Radiol,2021,50(12):2349-2363.
[64] IKUTA F,TAKAHASHI K,KIUCHI S,et al.Effects of repeated intra-articular hyaluronic acid on cartilage degeneration evaluated by T1ρ mapping in knee osteoarthritis[J].Mod Rheumatol,2021,31(4):912-918.
[65] WATKINS L E,RUBIN E B,MAZZOLI V,et al.Rapid volumetric gagCEST imaging of knee articular cartilage at 3T:evaluation of improved dynamic range and an osteoarthritic population[J].NMR Biomed,2020,33(8):e4310.
[66] SHIRAISHI K,CHIBA K,OKAZAKI N,et al.In vivo analysis of subchondral trabecular bone in patients with osteoarthritis of the knee using second-generation high-resolution peripheral quantitative computed tomography(HR-pQCT)[J].Bone,2020,132:115155.
[67] TURUNEN M J,TÖYRÄS J,KOKKONEN H T,et al.Quantitative evaluation of knee subchondral bone mineral density using cone beam computed tomography[J].IEEE Trans Med Imaging,2015,34(10):2186-2190.
[68] CHANG G,XIA D,CHEN C,et al.7T MRI detects deterioration in subchondral bone microarchitecture in subjects with mild knee osteoarthritis as compared with healthy controls[J].J Magn Reson Imaging,2015,41(5):1311-1317.
[69] MYLLER K A,TURUNEN M J,HONKANEN J T,et al.In vivo contrast-enhanced cone beam CT provides quantitative information on articular cartilage and subchondral bone[J].Ann Biomed Eng,2017,45(3):811-818.
[70] DE VRIES B A,VAN DER HEIJDEN R A,VERSCHUEREN J,et al.Quantitative subchondral bone perfusion imaging in knee osteoarthritis using dynamic contrast enhanced MRI[J].Semin Arthritis Rheum,2020,50(2):177-182.

相似文献/References:

[1]樊庆阳,任凯晶.定制3D打印切模辅助全膝关节置换术治疗 膝骨关节炎合并股骨干骨折畸形愈合[J].中医正骨,2015,27(11):37.
[2]刘晓雅,孙永强,刘国杰.主动快速康复锻炼对全膝关节置换术后关节活动度的影响[J].中医正骨,2015,27(09):73.
[3]郑春松,叶蕻芝,李西海,等.透骨消痛胶囊中补肾柔肝药和活血祛风药治疗 骨关节炎作用方式的计算机模拟比较[J].中医正骨,2015,27(07):6.
 ZHENG Chunsong,YE Hongzhi,LI Xihai,et al.Comparison of the mode of action of Bushen Rougan(补肾柔肝)drugs versus Huoxue Qufeng(活血祛风)drugs contained in Tougu Xiaotong Jiaonang(透骨消痛胶囊)for the treatment of osteoarthritis:A computer simulation study[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(03):6.
[4]宋兵华,孙俊英,倪增良,等.全膝关节置换术前CT测量股骨后髁角的临床意义[J].中医正骨,2015,27(07):38.
[5]郑春松,叶蕻芝,李西海,等.独活寄生汤含药血清对白细胞介素1β诱导的 退变关节软骨细胞中基质金属蛋白酶 和环氧化酶2表达的影响[J].中医正骨,2015,27(12):1.
 ZHENG Chunsong,YE Hongzhi,LI Xihai,et al.Impact of Duhuo Jisheng Tang(独活寄生汤)medicated serum on expression of matrix metalloproteinase and cyclooxygenase 2 in degenerative articular chondrocytes induced by interleukin-1 beta[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(03):1.
[6]王金良,孙京涛,李玲,等.骨水泥联合螺钉修复全膝关节置换术中 胫骨平台内侧骨缺损[J].中医正骨,2015,27(12):55.
[7]冯荣,王平,李炳奇,等.铍针刺络拔罐结合中药口服治疗膝骨关节炎合并 原发性血小板增多症1例[J].中医正骨,2015,27(12):73.
[8]蔡云仙.围手术期耳穴按压联合平衡针疗法 在全膝关节置换术后镇痛中的应用[J].中医正骨,2015,27(06):41.
[9]张荣,王健.人工全膝关节置换术的围手术期心理护理[J].中医正骨,2015,27(05):77.
[10]喻长纯,杨明路,王战朝.不同手术方式治疗胫骨平台骨折畸形愈合的体会[J].中医正骨,2015,27(03):37.
[11]孟维娜,明立功,王新德,等.关节镜下清理联合腓骨近1/3段截骨治疗膝骨关节炎[J].中医正骨,2015,27(11):40.
[12]明立功,孟维娜,王新德,等.腓骨近端截骨治疗内侧间室膝骨关节炎的近期疗效观察[J].中医正骨,2015,27(10):25.
[13]张杰,王人彦,张玉柱.膝骨关节炎的治疗进展[J].中医正骨,2015,27(10):68.
[14]梁朝,蔡静怡,闫立,等.针刀疗法改善膝骨关节炎早期疼痛症状的疗效评价[J].中医正骨,2015,27(09):9.
 LIANG Zhao,CAI Jingyi,YAN Li,et al.Evaluation of the curative effect of needle-knife therapy for relieving knee pain in patients with early knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(03):9.
[15]王建武,党建军,李强,等.四联疗法治疗膝骨关节炎[J].中医正骨,2015,27(08):44.
[16]刘红娟,郭会利,郭树农.云克联合中药治疗膝骨关节炎的护理[J].中医正骨,2015,27(08):75.
[17]陈卫衡.探索建立系统的膝骨关节炎中医临床科研范式 和理论体系[J].中医正骨,2015,27(07):1.
[18]帅波,沈霖,杨艳萍,等.加味青娥丸治疗膝骨关节炎的作用机制研究[J].中医正骨,2015,27(07):15.
 SHUAI Bo,SHEN Lin,YANG Yanping,et al.Study on the mechanism of action of Jiawei Qing'e Wan(加味青娥丸)for the treatment of knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(03):15.
[19]梅其杰,袁长深,段戡,等.壮药骨痹方烫熨联合运动疗法治疗膝骨关节炎的临床研究[J].中医正骨,2015,27(07):27.
 MEI Qijie,YUAN Changshen,DUAN Kan,et al.Clinical study of the curative effect of hot compressing and rubbing with packet of Gubi Fang(骨痹方)combined with exercise therapy in the treatment of knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(03):27.
[20]王丹辉,张燕,刘丽娟,等.重组人Ⅱ型肿瘤坏死因子受体-抗体融合蛋白 关节腔注射联合中药薰洗治疗膝骨关节炎的临床研究[J].中医正骨,2015,27(07):31.
 WANG Danhui,ZHANG Yan,LIU Lijuan,et al.Clinical study on intra-articular injection of TypeⅡrecombinant human tumor necrosis factor receptor-Fc fusion protein combined with Chinese herbal steaming and washing therapy for treatment of knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(03):31.

备注/Memo

备注/Memo:
通讯作者:刘迅 E-mail:liuxun365@163.com
更新日期/Last Update: 1900-01-01