参考文献/References:
[1] MICK P,FISCHER C.Delayed fracture healing[J].Semin Musculoskelet Radiol,2022,26(3):329-337.
[2] ZHANG L,JIN L,GUO J,et al.Chronic intermittent hypobaric hypoxia enhances bone fracture healing[J].Front Endocrinol(Lausanne),2020,11:582670.
[3] BAHNEY C S,ZONDERVAN R L,ALLISON P,et al.Cellular biology of fracture healing[J].J Orthop Res,2019,37(1):35-50.
[4] LIEW P X,KUBES P.The Neutrophil's role during health and disease[J].Physiol Rev,2019,99(2):1223-1248.
[5] PAPACHRISTOU D J,GEORGOPOULOS S,GIANNOUDIS P V,et al.Insights into the cellular and molecular mechanisms that govern the fracture-healing process:a narrative review[J].J Clin Med,2021,10(16):3354.
[6] SAUL D,KHOSLA S.Fracture healing in the setting of endocrine diseases,aging,and cellular senescence[J].Endocr Rev,2022,43(6):984-1002.
[7] MARUYAMA M,RHEE C,UTSUNOMIYA T,et al.Modulation of the inflammatory response and bone healing[J].Front Endocrinol(Lausanne),2020,11:386.
[8] WEIVODA M M,BRADLEY E W.Macrophages and bone remodeling[J].J Bone Miner Res,2023,38(3):359-369.
[9] LOOTS G G,ROBLING A G,CHANG J C,et al.Vhl deficiency in osteocytes produces high bone mass and hematopoietic defects[J].Bone,2018,116:307-314.
[10] HARRISON J S,RAMESHWAR P,CHANG V,et al.Oxygen saturation in the bone marrow of healthy volunteers[J].Blood,2002,99(1):394.
[11] 徐林,柏小金,骆旭东,等.大鼠股骨骨折合并脑外伤时HIF-1α及Cbfα1的血清表达及意义[J].临床和实验医学杂志,2014(9):689-692.
[12] CHEN X,LUO C,BAI Y,et al.Analysis of hypoxia indu-cible factor-1α expression and its effects on glycolysis of esophageal carcinoma[J].Crit Rev Eukaryot Gene Expr,2022,32(7):47-66.
[13] KIERANS S J,TAYLOR C T.Regulation of glycolysis by the hypoxia-inducible factor(HIF):implications for cellular physiology[J].J Physiol,2021,599(1):23-37.
[14] AMIR M S,CHIBA N,SEONG C H,et al.HIF-1α plays an essential role in BMP9-mediated osteoblast differentiation through the induction of a glycolytic enzyme,PDK1[J].J Cell Physiol,2022,237(4):2183-2197.
[15] DIRCKX N,TOWER R J,MERCKEN E M,et al.Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism[J].J Clin Invest,2018,128(3):1087-1105.
[16] SHUM L C,WHITE N S,MILLS B N,et al.Energy metabolism in mesenchymal stem cells during osteogenic differentiation[J].Stem Cells Dev,2016,25(2):114-122.
[17] KE W,MA L,WANG B,et al.N-cadherin mimetic hydrogel enhances MSC chondrogenesis through cell metabolism[J].Acta Biomater,2022,150:83-95.
[18] KAN T,HE Z,DU J,et al.Irisin promotes fracture healing by improving osteogenesis and angiogenesis[J].J Orthop Translat,2022,37:37-45.
[19] GROSSO A,BURGER M G,LUNGER A,et al.It takes two to tango:coupling of angiogenesis and osteogenesis for bone regeneration[J].Front Bioeng Biotechnol,2017,5:68.
[20] HU K,OLSEN B R.Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair[J].J Clin Invest,2016,126(2):509-526.
[21] TANG Z,LI W,XIE H,et al.Taohong Siwu-containing serum enhances angiogenesis in rat aortic endothelial cells by regulating the VHL/HIF-1α/VEGF signaling pathway[J/OL].Evid Based Complement Alternat Med,2021[2024-04-01].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629617.
[22] KUSUMBE A P,RAMASAMY S K,ADAMS R H.Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J].Nature,2014,507(7492):323-328.
[23] WU D,LIU L,FU S,et al.Osteostatin improves the osteogenic differentiation of mesenchymal stem cells and enhances angiogenesis through HIF-1α under hypoxia conditions in vitro[J].Biochem Biophys Res Commun,2022,606:100-107.
[24] DELGADO-CALLE J,BELLIDO T.The osteocyte as a signaling cell[J]. Physiol Rev,2022,102(1):379-410.
[25] RAHEJA L F,GENETOS D C,YELLOWLEY C E.Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway[J].Biochem Biophys Res Commun,2008,366(4):1061-1066.
[26] ZAHM A M,BUCARO M A,SRINIVAS V,et al.Oxygen tension regulates preosteocyte maturation and minerali-zation[J].Bone,2008,43(1):25-31.
[27] SUN R,ZHANG C,LIU Y,et al.Demethylase FTO promotes mechanical stress induced osteogenic differentiation of BMSCs with up-regulation of HIF-1α[J].Mol Biol Rep,2022,49(4):2777-2784.
[28] CHEN W,ZHUO Y,DUAN D,et al.Effects of hypoxia on differentiation of mesenchymal stem cells[J].Curr Stem Cell Res Ther,2020,15(4):332-339.
[29] LIU W,LI L,RONG Y,et al.Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J].Acta Biomater,2020,103:196-212.
[30] XUE Y,LI Z,WANG Y,et al.Role of the HIF-1α/SDF-1/CXCR4 signaling axis in accelerated fracture healing after craniocerebral injury[J].Mol Med Rep,2020,22(4):2767-2774.
[31] YE D,CHEN C,WANG Q,et al.Short-wave enhances mesenchymal stem cell recruitment in fracture healing by increasing HIF-1 in callus[J].Stem Cell Res Ther,2020,11(1):382.
[32] LV B,HUA T,LI F,et al.Hypoxia-inducible factor 1 α protects mesenchymal stem cells against oxygen-glucose deprivation-induced injury via autophagy induction and PI3K/AKT/mTOR signaling pathway[J].Am J Transl Res,2017,9(5):2492-2499.
[33] ZHANG Y,LV J,GUO H,et al.Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway[J].Cell Biochem Funct,2015,33(2):51-58.
[34] FENG Y,HAN Z,JIANG W,et al.Promotion of osteogenesis in BMSC under hypoxia by ATF4 via the PERK-eIF2α signaling pathway[J].In Vitro Cell Dev Biol Anim,2022,58(10):886-897.
[35] ZHANG L,JIAO G,REN S,et al.Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion[J].Stem Cell Res Ther,2020,11(1):38.
[36] ZHANG Y,HAO Z,WANG P,et al.Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture[J].Cell Prolif,2019,52(2):e12570.
[37] WANG X,WEI L,LI Q,et al.HIF-1α protects osteoblasts from ROS-induced apoptosis[J].Free Radic Res,2022,56(2):143-153.
[38] XU Y,SHU B,TIAN Y,et al.Notch activation promotes osteoblast mineralization by inhibition of apoptosis[J].J Cell Physiol,2018,233(10):6921-6928.
[39] MA X,YANG J,LIU T,et al.Gukang capsule promotes fracture healing by activating BMP/SMAD and Wnt/β-Catenin signaling pathways[J/OL].Evid Based Complement Alternat Med,2020[2024-04-01].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545469.
[40] KIM J M,LIN C,STAVRE Z,et al.Osteoblast-osteoclast communication and bone homeostasis [J].Cells,2020,9(9):2073.
[41] UDAGAWA N,KOIDE M,NAKAMURA M,et al.Osteoclast differentiation by RANKL and OPG signaling pathways[J].J Bone Miner Metab,2021,39(1):19-26.
[42] KNOWLES H J.Hypoxic regulation of osteoclast differenti-ation and bone resorption activity[J].Hypoxia(Auckl),2015,3:73-82.
[43] TIAN Y,SHAO Q,TANG Y,et al.HIF-1α regulates osteoclast activation and mediates osteogenesis during mandibular bone repair via CT-1[J].Oral Dis,2022,28(2):428-441.
[44] KANG H,YANG K,XIAO L,et al.Osteoblast hypoxia-inducible factor-1α pathway activation restrains osteoclastogenesis via the interleukin-33-MicroRNA-34a-Notch1 pathway[J].Front Immunol,2017,8:1312.
[45] CHEN K,ZHAO J,QIU M,et al.Osteocytic HIF-1α Pathway manipulates bone micro-structure and remodeling via regulating osteocyte terminal differentiation[J].Front Cell Dev Biol,2021,9:721561.