[1]杨虎,郑宇,王通,等.低氧诱导因子-1α促进骨折早期愈合的机制[J].中医正骨,2024,36(06):52-57.
点击复制

低氧诱导因子-1α促进骨折早期愈合的机制()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第36卷
期数:
2024年06期
页码:
52-57
栏目:
综述
出版日期:
2024-06-20

文章信息/Info

作者:
杨虎1郑宇2王通1丁福超1
1.陕西中医药大学,陕西 咸阳 712046; 2.陕西省中医医院,陕西 西安 710003
关键词:
骨折愈合 低氧诱导因子-1α 能量代谢 新生血管化生理性 骨髓 间质干细胞 骨细胞 成骨细胞 破骨细胞
摘要:
骨折愈合是一个复杂、连续且缓慢的过程,受多种因素影响,通常分为炎症、修复和重塑3个阶段。骨折早期,骨折部位处于缺氧状态,低氧诱导因子-1α(hypoxia-inducible factor-1α,HIF-1α)表达增加,在骨折愈合过程中起重要作用。本文概述了骨折愈合过程和HIF-1α的基本情况,并从HIF-1α与骨折愈合早期的能量代谢、HIF-1α与骨折部位血管生成、HIF-1α对骨系细胞的调控作用3个方面探讨了HIF-1α促进骨折早期愈合的机制,以期为骨折愈合的研究提供新的思路和方法。

参考文献/References:

[1] MICK P,FISCHER C.Delayed fracture healing[J].Semin Musculoskelet Radiol,2022,26(3):329-337.
[2] ZHANG L,JIN L,GUO J,et al.Chronic intermittent hypobaric hypoxia enhances bone fracture healing[J].Front Endocrinol(Lausanne),2020,11:582670.
[3] BAHNEY C S,ZONDERVAN R L,ALLISON P,et al.Cellular biology of fracture healing[J].J Orthop Res,2019,37(1):35-50.
[4] LIEW P X,KUBES P.The Neutrophil's role during health and disease[J].Physiol Rev,2019,99(2):1223-1248.
[5] PAPACHRISTOU D J,GEORGOPOULOS S,GIANNOUDIS P V,et al.Insights into the cellular and molecular mechanisms that govern the fracture-healing process:a narrative review[J].J Clin Med,2021,10(16):3354.
[6] SAUL D,KHOSLA S.Fracture healing in the setting of endocrine diseases,aging,and cellular senescence[J].Endocr Rev,2022,43(6):984-1002.
[7] MARUYAMA M,RHEE C,UTSUNOMIYA T,et al.Modulation of the inflammatory response and bone healing[J].Front Endocrinol(Lausanne),2020,11:386.
[8] WEIVODA M M,BRADLEY E W.Macrophages and bone remodeling[J].J Bone Miner Res,2023,38(3):359-369.
[9] LOOTS G G,ROBLING A G,CHANG J C,et al.Vhl deficiency in osteocytes produces high bone mass and hematopoietic defects[J].Bone,2018,116:307-314.
[10] HARRISON J S,RAMESHWAR P,CHANG V,et al.Oxygen saturation in the bone marrow of healthy volunteers[J].Blood,2002,99(1):394.
[11] 徐林,柏小金,骆旭东,等.大鼠股骨骨折合并脑外伤时HIF-1α及Cbfα1的血清表达及意义[J].临床和实验医学杂志,2014(9):689-692.
[12] CHEN X,LUO C,BAI Y,et al.Analysis of hypoxia indu-cible factor-1α expression and its effects on glycolysis of esophageal carcinoma[J].Crit Rev Eukaryot Gene Expr,2022,32(7):47-66.
[13] KIERANS S J,TAYLOR C T.Regulation of glycolysis by the hypoxia-inducible factor(HIF):implications for cellular physiology[J].J Physiol,2021,599(1):23-37.
[14] AMIR M S,CHIBA N,SEONG C H,et al.HIF-1α plays an essential role in BMP9-mediated osteoblast differentiation through the induction of a glycolytic enzyme,PDK1[J].J Cell Physiol,2022,237(4):2183-2197.
[15] DIRCKX N,TOWER R J,MERCKEN E M,et al.Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism[J].J Clin Invest,2018,128(3):1087-1105.
[16] SHUM L C,WHITE N S,MILLS B N,et al.Energy metabolism in mesenchymal stem cells during osteogenic differentiation[J].Stem Cells Dev,2016,25(2):114-122.
[17] KE W,MA L,WANG B,et al.N-cadherin mimetic hydrogel enhances MSC chondrogenesis through cell metabolism[J].Acta Biomater,2022,150:83-95.
[18] KAN T,HE Z,DU J,et al.Irisin promotes fracture healing by improving osteogenesis and angiogenesis[J].J Orthop Translat,2022,37:37-45.
[19] GROSSO A,BURGER M G,LUNGER A,et al.It takes two to tango:coupling of angiogenesis and osteogenesis for bone regeneration[J].Front Bioeng Biotechnol,2017,5:68.
[20] HU K,OLSEN B R.Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair[J].J Clin Invest,2016,126(2):509-526.
[21] TANG Z,LI W,XIE H,et al.Taohong Siwu-containing serum enhances angiogenesis in rat aortic endothelial cells by regulating the VHL/HIF-1α/VEGF signaling pathway[J/OL].Evid Based Complement Alternat Med,2021[2024-04-01].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8629617.
[22] KUSUMBE A P,RAMASAMY S K,ADAMS R H.Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone[J].Nature,2014,507(7492):323-328.
[23] WU D,LIU L,FU S,et al.Osteostatin improves the osteogenic differentiation of mesenchymal stem cells and enhances angiogenesis through HIF-1α under hypoxia conditions in vitro[J].Biochem Biophys Res Commun,2022,606:100-107.
[24] DELGADO-CALLE J,BELLIDO T.The osteocyte as a signaling cell[J]. Physiol Rev,2022,102(1):379-410.
[25] RAHEJA L F,GENETOS D C,YELLOWLEY C E.Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway[J].Biochem Biophys Res Commun,2008,366(4):1061-1066.
[26] ZAHM A M,BUCARO M A,SRINIVAS V,et al.Oxygen tension regulates preosteocyte maturation and minerali-zation[J].Bone,2008,43(1):25-31.
[27] SUN R,ZHANG C,LIU Y,et al.Demethylase FTO promotes mechanical stress induced osteogenic differentiation of BMSCs with up-regulation of HIF-1α[J].Mol Biol Rep,2022,49(4):2777-2784.
[28] CHEN W,ZHUO Y,DUAN D,et al.Effects of hypoxia on differentiation of mesenchymal stem cells[J].Curr Stem Cell Res Ther,2020,15(4):332-339.
[29] LIU W,LI L,RONG Y,et al.Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J].Acta Biomater,2020,103:196-212.
[30] XUE Y,LI Z,WANG Y,et al.Role of the HIF-1α/SDF-1/CXCR4 signaling axis in accelerated fracture healing after craniocerebral injury[J].Mol Med Rep,2020,22(4):2767-2774.
[31] YE D,CHEN C,WANG Q,et al.Short-wave enhances mesenchymal stem cell recruitment in fracture healing by increasing HIF-1 in callus[J].Stem Cell Res Ther,2020,11(1):382.
[32] LV B,HUA T,LI F,et al.Hypoxia-inducible factor 1 α protects mesenchymal stem cells against oxygen-glucose deprivation-induced injury via autophagy induction and PI3K/AKT/mTOR signaling pathway[J].Am J Transl Res,2017,9(5):2492-2499.
[33] ZHANG Y,LV J,GUO H,et al.Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway[J].Cell Biochem Funct,2015,33(2):51-58.
[34] FENG Y,HAN Z,JIANG W,et al.Promotion of osteogenesis in BMSC under hypoxia by ATF4 via the PERK-eIF2α signaling pathway[J].In Vitro Cell Dev Biol Anim,2022,58(10):886-897.
[35] ZHANG L,JIAO G,REN S,et al.Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion[J].Stem Cell Res Ther,2020,11(1):38.
[36] ZHANG Y,HAO Z,WANG P,et al.Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1α-mediated promotion of angiogenesis in a rat model of stabilized fracture[J].Cell Prolif,2019,52(2):e12570.
[37] WANG X,WEI L,LI Q,et al.HIF-1α protects osteoblasts from ROS-induced apoptosis[J].Free Radic Res,2022,56(2):143-153.
[38] XU Y,SHU B,TIAN Y,et al.Notch activation promotes osteoblast mineralization by inhibition of apoptosis[J].J Cell Physiol,2018,233(10):6921-6928.
[39] MA X,YANG J,LIU T,et al.Gukang capsule promotes fracture healing by activating BMP/SMAD and Wnt/β-Catenin signaling pathways[J/OL].Evid Based Complement Alternat Med,2020[2024-04-01].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7545469.
[40] KIM J M,LIN C,STAVRE Z,et al.Osteoblast-osteoclast communication and bone homeostasis [J].Cells,2020,9(9):2073.
[41] UDAGAWA N,KOIDE M,NAKAMURA M,et al.Osteoclast differentiation by RANKL and OPG signaling pathways[J].J Bone Miner Metab,2021,39(1):19-26.
[42] KNOWLES H J.Hypoxic regulation of osteoclast differenti-ation and bone resorption activity[J].Hypoxia(Auckl),2015,3:73-82.
[43] TIAN Y,SHAO Q,TANG Y,et al.HIF-1α regulates osteoclast activation and mediates osteogenesis during mandibular bone repair via CT-1[J].Oral Dis,2022,28(2):428-441.
[44] KANG H,YANG K,XIAO L,et al.Osteoblast hypoxia-inducible factor-1α pathway activation restrains osteoclastogenesis via the interleukin-33-MicroRNA-34a-Notch1 pathway[J].Front Immunol,2017,8:1312.
[45] CHEN K,ZHAO J,QIU M,et al.Osteocytic HIF-1α Pathway manipulates bone micro-structure and remodeling via regulating osteocyte terminal differentiation[J].Front Cell Dev Biol,2021,9:721561.

相似文献/References:

[1]于满秋,侯仁平,毕宏政.骨折端微动数字化测控系统在胫腓骨中下段双骨折外固定支架固定后早期负重锻炼中的应用[J].中医正骨,2016,28(08):39.
[2]刘震,于训意,曹长征,等.接骨续筋丸促进大鼠骨折愈合的作用机制研究[J].中医正骨,2017,29(10):1.
 LIU Zhen,YU Xunyi,CAO Changzheng,et al.Study on mechanism of action of Jiegu Xujin Wan(接骨续筋丸)in promoting fracture healing in rats[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(06):1.

备注/Memo

备注/Memo:
基金项目:陕西省中医药管理局科研课题(2019-GJ-JC011)
通讯作者:郑宇 E-mail:sxszyyygskzy@163.com
更新日期/Last Update: 1900-01-01