参考文献/References:
[1] KILLEN M C,CHARALAMBOUS C P.Advances in cartilage restoration techniques[M]//AHMED W,PHOENIX D A,JACKSON M J,et al.Advances in medical and surgical engineering.New York:Elsevier,2020:71-83.
[2] HAFEZI M,NOURI KHORASANI S,ZARE M,et al.Advanced hydrogels for cartilage tissue engineering:recent progress and future directions[J].Polymers(Basel),2021,13(23):4199.
[3] WEI W,DAI H.Articular cartilage and osteochondral tissue engineering techniques:recent advances and challenges[J].Bioact Mater,2021,6(12):4830-4855.
[4] KOONS G L,DIBA M,MIKOS A G.Materials design for bone-tissue engineering[J].Nat Rev Mater,2020,5:584-603.
[5] NIKPOUR P,SALIMI-KENARI H,RABIEE S M.Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration[J].Prog Biomater,2021,10(4):271-280.
[6] MEANS A K,SHRODE C S,WHITNEY L V,et al.Double network hydrogels that mimic the modulus,strength,and lubricity of cartilage[J].Biomacromolecules,2019,20(5):2034-2042.
[7] PIERAU L,VERSACE D L.Light and hydrogels:a new generation of antimicrobial materials[J].Materials(Basel),2021,14(4):787.
[8] ZHU S,LI Y,HE Z,et al.Advanced injectable hydrogels for cartilage tissue engineering[J].Front Bioeng Biotechnol,2022,10:954501.
[9] LIN H,YIN C,MO A,et al.Applications of hydrogel with special physical properties in bone and cartilage regeneration[J].Materials(Basel),2021,14(1):235.
[10] LU L,YUAN S,WANG J,et al.The formation mechanism of hydrogels[J].Curr Stem Cell Res Ther,2018,13(7):490-496.
[11] GOMEZ-FLORIT M,PARDO A,DOMINGUES R M A,et al.Natural-based hydrogels for tissue engineering applications[J].Molecules,2020,25(24):5858.
[12] 侯熙,张然,武秀萍,等.仿生水凝胶在软骨组织工程应用中的优势与潜力[J].中国组织工程研究,2022,26(34):5569-5576.
[13] ALI F,KHAN I,CHEN J,et al.Emerging fabrication strategies of hydrogels and its applications[J].Gels,2022,8(4):205.
[14] YAO Y,WANG P,LI X,et al.A di-self-crosslinking hyaluronan-based hydrogel combined with type I collagen to construct a biomimetic injectable cartilage-filling scaffold[J].Acta Biomaterialia,2020,111:197-207.
[15] LI Y,WANG X,HAN Y,et al.Click chemistry-based biopolymeric hydrogels for regenerative medicine[J].Biomed Mater,2021,16(2):022003.
[16] QUADRADO R F N,MACAGNAN K L,MOREIRA A S,et al.Chitosan-based hydrogel crosslinked through an aza-Michael addition catalyzed by boric acid[J].Int J Biol Macromol,2021,193(Pt B):1032-1042.
[17] JIN R,TEIXEIRA L S M,KROUWELS A,et al.Synthesis and characterization of hyaluronic acid-poly(ethylene glycol)hydrogels via Michael addition:an injectable biomaterial for cartilage repair[J].Acta biomater,2010,6(6):1968-1977.
[18] HUANG J,JIANG X.Injectable and degradable pH-responsive hydrogels via spontaneous amino-yne click reaction[J].ACS Appl Mater Interfaces,2018,10(1):361-370.
[19] ZHENG D,CHEN T,HAN L,et al.Synergetic integrations of bone marrow stem cells and transforming growth factor-β1 loaded chitosan nanoparticles blended silk fibroin injectable hydrogel to enhance repair and regeneration potential in articular cartilage tissue[J].Int Wound J,2022,19(5):1023-1038.
[20] LI X,A S,XU Q,et al.Cartilage-derived progenitor cell-laden injectable hydrogel-an approach for cartilage tissue regeneration[J].ACS Appl Bio Mater,2020,3(8):4756-4765.
[21] MCKAY C S,FINN M G.Click chemistry in complex mixtures:bioorthogonal bioconjugation[J].Chem Biol,2014,21(9):1075-1101.
[22] SAHAJPAL K,SHEKHAR S,KUMAR A,et al.Dynamic protein and polypeptide hydrogels based on Schiff base co-assembly for biomedicine[J].J Mater Chem B,2022,10(17):3173-3198.
[23] RESMI R,PARVATHY J,JOHN A,et al.Injectable self-crosslinking hydrogels for meniscal repair:a study with oxidized alginate and gelatin[J].Carbohydr Polym,2020,234:115902.
[24] ANAND R,NIMI N,SIVADAS V P,et al.Dual crosslinked pullulan-gelatin cryogel scaffold for chondrocyte-mediated cartilage repair:synthesis,characterization and in vitro evaluation[J].Biomed Mater,2021,17(1):015001.
[25] YAN J,MIAO Y,TAN H,et al.Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2016,63:274-284.
[26] YANG J A,YEOM J,HWANG B W,et al.In situ-forming injectable hydrogels for regenerative medicine[J].Prog Polym Sci,2014,39(12):1973-1986.
[27] KHANMOHAMMADI M,JALESSI M,ASGHARI A.Biomimetic hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering[J].BMC Res Notes,2022,15(1):174.
[28] IRMAK G,GÜMÜSDERELIOGLU M.Photo-activated platelet-rich plasma(PRP)-based patient-specific bio-ink for cartilage tissue engineering[J].Biomed Mater,2020,15(6):065010.
[29] PILUSO S,GOMEZ D F,DOKTER I,et al.Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking[J].J Mater Chem B,2020,8(41):9566-9575.
[30] OLOV N,BAGHERI-KHOULENJANI S,MIRZADEH H.Injectable hydrogels for bone and cartilage tissue engineering:a review[J].Prog Biomater,2022,11(2):113-135.
[31] GAO Y,LI Z,HUANG J,et al.In situ formation of injectable hydrogels for chronic wound healing[J].J Mater Chem B,2020,8(38):8768-8780.
[32] MATHEW A P,UTHAMAN S,CHO K H,et al.Injectable hydrogels for delivering biotherapeutic molecules[J].Int J Biol Macromol,2018,110:17-29.
[33] DETHE M R,PRABAKARAN A,AHMED H,et al.PCL-PEG copolymer based injectable thermosensitive hydrogels[J].J Control Release,2022,343:217-236.
[34] HUANG Q,ZOU Y,ARNO M C,et al.Hydrogel scaffolds for differentiation of adipose-derived stem cells[J].Chem Soc Rev,2017,46(20):6255-6275.
[35] SUN J Y,ZHAO X,ILLEPERUMA W R K,et al.Highly stretchable and tough hydrogels[J].Nature,2012,489(7414):133-136.
[36] CAI Z,TANG Y,WEI Y,et al.Double-network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration[J].Acta Biomater,2022,152:124-143.
[37] GU Z,HUANG K,LUO Y,et al.Double network hydrogel for tissue engineering[J].Wiley Interdiscip Rev Nanomed Nanobiotechnol,2018,10(6):e1520.
[38] DISTLER T,MCDONALD K,HEID S,et al.Ionically and enzymatically dual cross-linked oxidized alginate gelatin hydrogels with tunable stiffness and degradation behavior for tissue engineering[J].ACS Biomater Sci Eng,2020,6(7):3899-3914.
[39] AGAS D,LAUS F,LACAVA G,et al.Thermosensitive hybrid hyaluronan/p(HPMAm-lac)-PEG hydrogels enhance cartilage regeneration in a mouse model of osteoarthritis[J].J Cell Physiol,2019,234(11):20013-20027.
[40] ZHANG Y,YU J,REN K,et al.Thermosensitive hydrogels as scaffolds for cartilage tissue engineering[J].Biomacromolecules,2019,20(4):1478-1492.
[41] MEANS A K,GRUNLAN M A.Modern strategies to achieve tissue-mimetic,mechanically robust hydrogels[J].ACS Macro Lett,2019,8(6):705-713.
[42] LI X,BIAN S,ZHAO M,et al.Stimuli-responsive biphenyl-tripeptide supramolecular hydrogels as biomimetic extra-cellular matrix scaffolds for cartilage tissue engineering[J].Acta Biomaterialia,2021,131:128-137.
[43] WANG Q,LI X,WANG P,et al.Bionic composite hydrogel with a hybrid covalent/noncovalent network promoting phenotypic maintenance of hyaline cartilage[J].J Mater Chem B,2020,8(20):4402-4411.
[44] YAN S,WANG T,FENG L,et al.Injectable in situ self-cross-linking hydrogels based on poly(L-glutamic acid)and alginate for cartilage tissue engineering[J].Biomacromolecules,2014,15(12):4495-4508.
[45] BASHIR M H,KORANY N S,FARAG D B E,et al.Polymeric nanocomposite hydrogel scaffolds in craniofacial bone regeneration:a comprehensive review[J].Biomolecules,2023,13(2):205.
相似文献/References:
[1]刘晓雅,孙永强,刘国杰.主动快速康复锻炼对全膝关节置换术后关节活动度的影响[J].中医正骨,2015,27(09):73.
[2]王文波,董建文,杨振国,等.加味阳和汤对早期膝骨关节炎兔关节软骨的影响[J].中医正骨,2015,27(01):1.
WANG Wenbo,DONG Jianwen,YANG Zhenguo,et al.Effect of Jiawei Yanghe Tang(加味阳和汤)on articular cartilage in rabbits with early knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(07):1.
[3]郭发启,高书图,丁幸坡.关节软骨组织工程研究进展[J].中医正骨,2011,23(03):23.
[4]陈旭,余进伟,赵运亮,等.膝关节关节液和血清中骨钙素、基质金属蛋白酶1
及胰岛素样生长因子Ⅰ含量与软骨损伤关系的
初步研究[J].中医正骨,2016,28(02):20.
CHEN Xu,YU Jinwei,ZHAO Yunliang,et al.A pilot study on the relationship between knee cartilage injury and contents of bone gla protein,matrix metalloproteinase 1 and insulin-like growth factorⅠin knee synovial fluid and serum[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(07):20.
[5]袁普卫,李小群,康武林,等.蠲痹胶囊对膝骨关节炎豚鼠关节软骨组织形态及滑膜中Toll样受体4、NF-κB p65及肿瘤坏死因子-α表达的影响[J].中医正骨,2016,28(09):5.
YUAN Puwei,LI Xiaoqun,KANG Wulin,et al.Impact of Juanbi Jiaonang(蠲痹胶囊,JBJN)on articular cartilage tissue form and expression of Toll-like receptor 4,NF-kB p65 and tumor necrosis factor-alpha in synovium in guinea pigs with knee osteoarthritis[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2016,28(07):5.
[6]徐向峰,王庆东,金艳南,等.关节镜下可吸收螺钉内固定治疗髌骨骨软骨骨折[J].中医正骨,2016,28(12):65.
[7]张增乔,冯伟,卢远坚,等.软骨和软骨下骨的生物力学相互作用对骨关节炎影响的研究 进展[J].中医正骨,2017,29(05):23.
[8]金永鑫.关节镜下半月板切除或缝合术治疗外侧半月板撕裂合并关节软骨损伤[J].中医正骨,2017,29(05):45.
[9]叶锦霞,付长龙,林洁,等.透骨消痛胶囊对毒胡萝卜素诱导的内质网应激PEKR信号通路介导的大鼠体外培养关节软骨细胞凋亡的影响[J].中医正骨,2017,29(06):1.
YE Jinxia,FU Changlong,LIN Jie,et al.Effect of Tougu Xiaotong Jiaonang(透骨消痛胶囊)on apoptosis mediated by endoplasmic reticulum stress(PEKR signaling pathway)and induced by thapsigargin in rat's articular chondrocytes cultured in vitro[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(07):1.
[10]郑春松,付长龙,林洁,等.应用化合物-靶点网络预测杜仲延缓软骨退变的药效物质基础及作用机制[J].中医正骨,2017,29(12):6.
ZHENG Chunsong,FU Changlong,LIN Jie,et al.Application of compound-target network in predicting the pharmacodynamic material basis of eucommia ulmoides in delaying cartilage degeneration and its mechanism of action[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(07):6.