[1]廖莹莹,张鑫,任凯,等.郑氏芪藤软坚散外敷治疗创伤性膝关节僵硬的实验研究[J].中医正骨,2023,35(02):1-9,21.
 LIAO Yingying,ZHANG Xin,REN Kai,et al.An experimental study of external application of Zheng's Qiteng Ruanjian San in the treatment of post-traumatic knee joint stiffness[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2023,35(02):1-9,21.
点击复制

郑氏芪藤软坚散外敷治疗创伤性膝关节僵硬的实验研究()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第35卷
期数:
2023年02期
页码:
1-9,21
栏目:
基础研究
出版日期:
2023-02-20

文章信息/Info

Title:
An experimental study of external application of Zheng's Qiteng Ruanjian San in the treatment of post-traumatic knee joint stiffness
作者:
廖莹莹1张鑫1任凯1刘辉1陈科1温呈洪2税晓平3
(1.四川省骨科医院,四川 成都 610041; 2.成都体育学院附属体育医院,四川 成都 610041; 3.绵阳市骨科医院,四川 绵阳 621000)
Author(s):
LIAO Yingying1ZHANG Xin1REN Kai1LIU Hui1CHEN Ke1WEN Chenghong2SHUI Xiaoping3
1.Sichuan Province Orthopedic Hospital,Chengdu 610041,Sichuan,China 2.Affiliated Sport Hospital of Chengdu Sport University,Chengdu 610041,Sichuan,China 3.Mianyang Orthopedics Hospital,Mianyang 621000,Sichuan,China
关键词:
膝关节 关节僵硬 创伤和损伤 郑氏芪藤软坚散 动物实验
Keywords:
knee joint joint stiffness wounds and injuries Zheng's Qiteng Ruanjian San animal experimentation
摘要:
目的:观察郑氏芪藤软坚散外敷治疗创伤性膝关节僵硬的疗效,并探讨其可能的作用机制。方法:从66只8周龄SPF级雄性SD大鼠中随机选取18只纳入空白组,剩余48只建立右侧创伤性膝关节屈曲型僵硬模型,将造模成功的41只大鼠随机纳入模型组(20只)和软坚散组(21只)。空白组和模型组大鼠常规喂养,不予干预; 软坚散组大鼠造模成功后采用郑氏芪藤软坚散外敷,每天1次,连续治疗4周。分别于药物干预开始前、药物干预开始后2周、药物干预结束后,从各组随机选取部分大鼠,分别进行右侧膝关节活动度测量、膝关节囊厚度测量、膝关节囊组织病理学观察及成纤维细胞计数(HE染色)、膝关节囊中转化生长因子β1(transforming growth factor β1,TGF-β1)水平测定(免疫组织化学法)。结果:①膝关节活动度。在3个时间点,3组大鼠的膝关节活动度总体比较,差异均有统计学意义(122.43°±4.54°,64.78°±2.68°,65.13°±4.52°,F=530.817,P=0.000; 124.50°±5.01°,82.83°±6.05°,88.67°±8.62°,F=67.404,P=0.000; 122.33°±4.08°,92.50°±2.74°,107.13°±7.41°,F=44.886,P=0.000)。在3个时间点,空白组的膝关节活动度均大于模型组和软坚散组(P=0.000,P=0.000; P=0.000,P=0.000; P=0.000,P=0.000); 药物干预开始前、药物干预开始后2周时,模型组和软坚散组的膝关节活动度比较,组间差异均无统计学意义(P=0.857,P=0.154); 药物干预结束后,软坚散组的膝关节活动度大于模型组(P=0.000)。②膝关节囊厚度。在3个时间点,3组大鼠的膝关节囊厚度总体比较,差异均有统计学意义[(0.256±0.020)mm,(0.533±0.024)mm,(0.528±0.012)mm,F=412.282,P=0.000;(0.254±0.036)mm,(0.531±0.018)mm,(0.523±0.019)mm,F=125.803,P=0.000;(0.257±0.028)mm,(0.527±0.017)mm,(0.521±0.014)mm,F=211.708,P=0.000]。在3个时间点,空白组的膝关节囊厚度均小于模型组(P=0.000,P=0.000,P=0.000); 药物干预开始前和药物干预结束后,软坚散组的膝关节囊厚度均大于空白组(P=0.000,P=0.000); 药物干预开始后2周时,软坚散组与空白组的膝关节囊厚度的差异无统计学意义(P=0.053); 在3个时间点,模型组与软坚散组的膝关节囊厚度比较,组间差异均无统计学意义(P=0.702,P=0.740,P=0.725)。③膝关节囊组织成纤维细胞计数结果。在3个时间点,3组大鼠膝关节囊中成纤维细胞数量总体比较,差异均有统计学意义[(1.67±0.98)个,(98.25±17.97)个,(103.92±11.85)个,F=85.392,P=0.000;(1.93±1.09)个,(68.92±17.50)个,(46.17±7.37)个,F=48.565,P=0.000;(1.80±0.96)个,(49.83±11.41)个,(31.73±10.66)个,F=34.755,P=0.000]。在3个时间点,空白组膝关节囊中成纤维细胞数量均少于模型组和软坚散组(P=0.000,P=0.000; P=0.000,P=0.000; P=0.000,P=0.000); 药物干预开始前,软坚散组和模型组膝关节囊中成纤维细胞数量比较,差异无统计学意义(P=0.535); 药物干预开始后2周和药物干预结束后,软坚散组膝关节囊中成纤维细胞数量均少于模型组(P=0.011,P=0.010)。④膝关节囊中TGF-β1水平。在3个时间点,3组大鼠膝关节囊中TGF-β1水平总体比较,差异均有统计学意义[(0.148±0.060)%,(2.454±1.392)%,(2.519±0.653)%,F=9.240,P=0.007;(0.147±0.054)%,(1.136±0.491)%,(0.271±0.095)%,F=13.765,P=0.002;(0.147±0.059)%,(0.765±0.339)%,(0.190±0.070)%,F=13.105,P=0.002]。药物干预开始前,模型组和软坚散组膝关节囊中TGF-β1水平均高于空白组(P=0.005,P=0.004),软坚散组与模型组膝关节囊中TGF-β1水平的差异无统计学意义(P=0.920); 药物干预开始后2周时,模型组膝关节囊中TGF-β1水平高于空白组和软坚散组(P=0.001,P=0.002),软坚散组与空白组膝关节囊中TGF-β1水平的差异无统计学意义(P=0.563); 药物干预结束后,模型组膝关节囊中TGF-β1水平高于空白组和软坚散组(P=0.001,P=0.001),软坚散组与空白组膝关节囊中TGF-β1水平的差异无统计学意义(P=0.745)。结论:早期应用郑氏芪藤软坚散,可以促进创伤性膝关节僵硬模型大鼠膝关节功恢复,抑制成纤维细胞增殖和TGF-β1表达可能是其作用机制之一。
Abstract:
Objective:To observe the effect and underlying mechanism of external application of Zheng's Qiteng Ruanjian San in the treatment of post-traumatic knee joint stiffness.Methods:Sixty-six 8-week-old male SD rats of SPF grade were enrolled and randomly divided into a blank group(n=18)and an experimental group(n=48).The right post-traumatic knee joint stiffness model of flexion type was induced in 48 rats of the experimental group.Forty-one successful model rats were randomly divided into a model group(n=20)and a Qiteng Ruanjian San group(n=21).Rats in the blank group and the model group were fed routinely without intervention,while those in the Qiteng Ruanjian San group received external application of Qiteng Ruanjian San,once a day for 4 weeks after modeling.Some rats were randomly selected from each group before drug intervention,at 2 weeks of drug intervention,and after drug intervention for the measurement of right knee joint range of motion and knee capsule thickness,histopathological observation of knee capsule,fibroblast count(HE staining),and the determination of transforming growth factor β1(TGF-β1)level in the knee capsule(immunohistochemistry).Results:①Knee joint range of motion.There were statistically significant differences in the overall knee joint range of motion among the blank group,the model group,and the Qiteng Ruanjian San group at three time points(122.43°±4.54° vs 64.78°±2.68° vs 65.13°±4.52°,F=530.817,P=0.000; 124.50°±5.01° vs 82.83°±6.05° vs 88.67°±8.62°,F=67.404,P=0.000; 122.33°±4.08° vs 92.50°±2.74° vs 107.13°±7.41°,F=44.886,P=0.000).At the three time points,the knee joint range of motion in the blank group was greater than those in the model group and the Qiteng Ruanjian San group(P=0.000,P=0.000; P=0.000,P=0.000; P=0.000,P=0.000).There was no significant difference in the knee joint range of motion between the model group and the Qiteng Ruanjian San group before drug intervention and at 2 weeks of drug intervention(P=0.857,P=0.154),and the knee joint range of motion in the Qiteng Ruanjian San group was greater than that in the model group after drug intervention(P=0.000).②Knee capsule thickness.There were overall statistically significant differences in the knee joint capsule thickness among the blank group,the model group,and the Qiteng Ruanjian San group at three time points(0.256±0.020 vs 0.533±0.024 vs 0.528±0.012 mm,F=412.282,P=0.000; 0.254±0.036 vs 0.531±0.018 vs 0.523±0.019 mm,F=125.803,P=0.000; 0.257±0.028 vs 0.527±0.017 vs 0.521±0.014 mm,F=211.708,P=0.000).At the three time points,the knee capsule thickness of the blank group was smaller than that of the model group(P=0.000,P=0.000,P=0.000),and the knee capsule thickness of the Qiteng Ruanjian San group was greater than that of the blank group before and after drug intervention(P=0.000,P=0.000).There was no significant difference in the knee capsule thickness between the Qiteng Ruanjian San group and the blank group at 2 weeks of drug intervention(P=0.053).At the three time points,there was no significant difference in the knee capsule thickness between the model group and the Qiteng Ruanjian San group(P=0.702,P=0.740,P=0.725).③Fibroblast count results of knee capsule tissues.There were statistically significant differences in fibroblast count of knee capsule tissues among the blank group,the model group,and the Qiteng Ruanjian San group at three time points(1.67±0.98 vs 98.25±17.97 vs 103.92±11.85,F=85.392,P=0.000; 1.93±1.09 vs 68.92±17.50 vs 46.17±7.37,F=48.565,P=0.000; 1.80±0.96 vs 49.83±11.41 vs 31.73±10.66,F=34.755,P=0.000).At the three time points,the fibroblast count in knee capsule tissues of the blank group was less than those of the model group and the Qiteng Ruanjian San groups(P=0.000,P=0.000; P=0.000,P=0.000; P=0.000,P=0.000).There was no significant difference in the fibroblast count in knee capsule tissues between the Qiteng Ruanjian San group and the model group before drug intervention(P=0.535),and the fibroblast count in knee capsule tissues of the Qiteng Ruanjian San group was less than that of the model group at 2 weeks of drug intervention and after drug intervention(P=0.011,P=0.010).④TGF-β1 levels in the knee capsule.There were statistically significant differences in TGF-β1 levels among the blank group,the model group,and the Qiteng Ruanjian San group at three time points(0.148±0.060 vs 2.454±1.392 vs 2.519±0.653%,F=9.240,P=0.007; 0.147±0.054 vs 1.136±0.491 vs 0.271±0.095%,F=13.765,P=0.002; 0.147±0.059 vs 0.765±0.339 vs 0.190±0.070%,F=13.105,P=0.002).Before drug intervention,the TGF-β1 levels in the knee capsule of the model group and the Qiteng Ruanjian San group were higher than that of the blank group(P=0.005,P=0.004),and there was no significant difference in the TGF-β1 levels in the knee capsule between the Qiteng Ruanjian San group and the model group(P=0.920).At 2 weeks of drug intervention,the TGF-β1 level in the knee capsule of the model group was higher than those of the blank group and the Qiteng Ruanjian San group(P=0.001,P=0.002),and there was no significant difference in the TGF-β1 levels in the knee capsule between the Qiteng Ruanjian San group and the blank group(P=0.563).After drug intervention,the TGF-β1 level in the knee capsule of the model group was higher than those of the blank group and the Qiteng Ruanjian San group(P=0.001,P=0.001),and there was no significant difference in the TGF-β1 levels in the knee capsule between the Qiteng Ruanjian San group and the blank group(P=0.745).Conclusion:Early application of Zheng's Qiteng Ruanjian San can improve the knee joint function of rats with post-traumatic knee joint stiffness,and the inhibition of fibroblast proliferation and TGF-β1 expression may be one of its mechanisms.

参考文献/References:

[1] 胥少汀,葛宝丰,徐印坎.实用骨科学[M].4版.北京:人民军医出版社,2019:2263-2264.
[2] 刘波.常用骨伤康复方案[M].成都:四川大学出版社,2014:208.
[3] KANEGUCHI A,OZAWA J,MINAMIMOTO K,et al.Active exercise on immobilization-induced contractured rat knees develops arthrogenic joint contracture with pathological changes[J].J Appl Physiol(1985),2018,124(2):291-301.
[4] SALIB C G,REINA N,TROUSDALE W H,et al.Inhibition of COX-2 pathway as a potential prophylaxis against arthrofibrogenesis in a rabbit model of joint contracture[J].J Orthop Res,2019,37(12):2609-2620.
[5] WANG F,ZHOU C X,ZHENG Z,et al.Metformin reduces myogenic contracture and myofibrosis induced by rat knee joint immobilization via AMPK-mediated inhibition of TGF-β1/Smad signaling pathway[J].Connect Tissue Res,2023,64(1):26-39.
[6] HILDEBRAND K A,ZHANG M,HART D A.Myofibroblast upregulators are elevated in joint capsules in posttraumatic contractures[J].Clin Orthop Relat Res,2007,456:85-91.
[7] 田海源.不同时间的静态渐进牵伸对大鼠创伤性膝关节挛缩的影响[D].石家庄:河北师范大学,2017.
[8] 秦川,魏泓.实验动物学[M].2版.北京:人民卫生出版社,2015:298-299.
[9] 王璐,张立宁,何家乐,等.不同时长的静态进展性牵伸对大鼠创伤性膝关节挛缩的治疗效果及其机制研究[J].四川大学学报(医学版),2020,51(2):185-192.
[10] EFIRD W,KELLAM P,YEAZELL S,et al.An evaluation of prophylactic treatments to prevent post traumatic joint stiffness[J].J Orthop Res,2014,32(11):1520-1524.
[11] 张全兵.牵伸联合超短波治疗对兔膝关节挛缩模型中关节功能恢复以及关节囊纤维化影响的初步研究[D].合肥:安徽医科大学,2018.
[12] ZHOU H,TRUDEL G,GOUDREAU L,et al.Knee joint stiffness following immobilization and remobilization:a study in the rat model[J].J Biomech,2020,99:109471.
[13] BARANOWSKI A,SCHLEMMER L,FÖRSTER K,et al.A novel rat model of stable posttraumatic joint stiffness of the knee[J].J Orthop Surg Res,2018,13(1):185.
[14] KOJIMA S,HOSO M,WATANABE M,et al.Experimental joint immobilization and remobilization in the rats[J].J Phys Ther Sci,2014,26(6):865-871.
[15] KANEGUCHI A,OZAWA J,MINAMIMOTO K,et al.Low-level laser therapy prevents treadmill exercise-induced progression of arthrogenic joint contracture via attenuation of inflammation and fibrosis in remobilized rat knees[J].Inflammation,2019,42(3):857-873.
[16] ALBRO M B,NIMS R J,CIGAN A D,et al.Accumulation of exogenous activated TGF-β in the superficial zone of articular cartilage[J].Biophys J,2013,104(8):1794-1804.
[17] KANEGUCHI A,OZAWA J.Inflammation and fibrosis induced by joint remobilization,and relevance to progression of arthrogenic joint contracture:a narrative review[J].Physiol Res,2022,71(4):447-488.
[18] KANEGUCHI A,OZAWA J,KAWAMATA S,et al.Deve-lopment of arthrogenic joint contracture as a result of pathological changes in remobilized rat knees[J].J Orthop Res,2017,35(7):1414-1423.
[19] SUN Y,LI F,FAN C.Effect of pERK2 on extracellular matrix turnover of the fibrotic joint capsule in a post-traumatic joint contracture model[J].Exp Ther Med,2016,11(2):547-552.
[20] WAN Q,LIU F,ZHANG J,et al.Overexpression of laminin α4 facilitates proliferation and migration of fibroblasts in knee arthrofibrosis by targeting canonical Shh/Gli1 signaling[J].Connect Tissue Res,2021,62(4):464-474.
[21] ABDEL M P,MORREY M E,BARLOW J D,et al.Myofibroblast cells are preferentially expressed early in a rabbit model of joint contracture[J].J Orthop Res,2012,30(5):713-719.
[22] ITAYA N,YABE Y,HAGIWARA Y,et al.Effects of lowin-tensity pulsed ultrasound for preventing joint stiffness in immobilized knee model in rats[J].Ultrasound Med Biol,2018,44(6):1244-1256.
[23] INOUE S,MORIYAMA H,WAKIMOTO Y,et al.Transcutaneous application of carbon dioxide improves contractures after immobilization of rat knee joint[J].Phys Ther Res,2020,23(2):113-122.
[24] MAYR H O,FASSBENDER F F,PRALL W C,et al.Immunohistochemical examination in arthrofibrosis of the knee joint[J].Arch Orthop Trauma Surg,2019,139(3):383-391.
[25] 左军,牟景光,胡晓阳.半夏化学成分及现代药理作用研究进展[J].辽宁中医药大学学报,2019,21(9):26-29.
[26] 敬小莉,孙续禄,张俊,等.黄芪提取物对特发性肺纤维化小鼠的治疗效果及TGF-β、VEGF分析[J].中华中医药学刊,2021,39(4):248-250.
[27] 傅亮,李玉杰,来媛媛,等.黄芪注射液联合葛根素注射液对HK-2细胞TGF-β1/Smads及BMP-7/Smad5信号通路的影响[J].环球中医药,2019,12(3):343-347.
[28] 张敬博,陈平平,于栋华,等.黄芩-赤芍药对不同比例配伍抗大鼠肝纤维化模型作用机制探讨[J].中国实验方剂学杂志,2022,28(12):69-77.
[29] 王文文,程锦国.温莪术对大鼠肾间质纤维化的保护作用及其机制研究[J].中华中医药学刊,2014,32(1):144-146.
[30] 黄礼闯,赵梦亭,桑夏楠,等.三棱-莪术药对化学成分及药理作用研究进展[J].中华中医药杂志,2021,36(11):6612-6616.
[31] 李双,黎锐,曾勇,等.川乌的化学成分和药理作用研究进展[J].中国中药杂志,2019,44(12):2433-2443.
[32] 航艾,孙杰,盛云华,等.基于药代动力学的山豆根抗炎作用机制研究[J].中国药理学通报,2020,36(5):645-649.
(收稿日期:2022-08-25 本文编辑:李晓乐)

相似文献/References:

[1]韩序勇,王鼎,张庆文.关节镜下TightRope钢板固定系统重建前交叉韧带[J].中医正骨,2016,28(06):45.
[2]胡洛爽,王润民,沈进稳,等.富血小板血浆关节腔注射联合清凉膏外敷治疗膝关节滑膜炎[J].中医正骨,2016,28(11):40.
[3]李前,陈绍军,李岗,等.“8”字悬吊法重建外侧副韧带及腘腓韧带治疗膝关节多发韧带损伤[J].中医正骨,2017,29(03):49.
[4]曾斌,吴旭东,黄小刚,等.腰托辅助膝关节外翻法在关节镜下内侧半月板后角成形术中的应用[J].中医正骨,2017,29(03):58.
[5]陈罗西,刘波,张晓芳,等.传统关节黏连松解术联合中药内服外敷治疗骨化性肌炎并发关节僵硬[J].中医正骨,2017,29(04):76.
[6]王华,王国平,应霁翀,等.MRI检查在膝关节滑膜血管瘤诊断中的价值[J].中医正骨,2017,29(06):44.
[7]杨伟毅,潘建科,韩燕鸿,等.陈旧性前交叉韧带损伤诊治中需要注意的问题[J].中医正骨,2017,29(08):48.
[8]张德洲,吴俊华,易雪冰,等.基于MRI探讨髌骨骑跨与髌骨软化症的关系…[J].中医正骨,2017,29(11):38.
 ZHANG Dezhou,WU Junhua,YI Xuebing,et al.Clinical study on the relationship between patellar straddling and chondromalacia patellae using MRI[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2017,29(02):38.
[9]吕士金,岳海振,赵以成,等.肱骨外上髁截骨入路肘关节筋膜间置成形术联合铰链外固定架外固定治疗创伤后肘关节僵硬[J].中医正骨,2018,30(04):69.
[10]李彬,陈巍,王程远,等.关节镜下前内侧入路制作股骨隧道解剖重建前交叉韧带[J].中医正骨,2018,30(05):62.
[11]柴巍巍,尚延春,孙永强,等.全膝关节置换术治疗伸直型膝关节僵硬[J].中医正骨,2017,29(06):56.
[12]李克军,蒋拥军,白梦迪,等.超声波疗法在创伤后膝关节僵硬康复治疗中的应用[J].中医正骨,2019,31(02):14.
 LI Kejun,JIANG Yongjun,BAI Mengdi,et al.Application of ultrasonic therapy to rehabilitation of posttraumatic knee joint stiffness[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2019,31(02):14.

备注/Memo

备注/Memo:
基金项目:四川省中医药管理局科学技术研究专项课题(2020JC0098);四川省区域中医(专科)诊疗中心建设项目(川中医药函〔2018〕20号) 通讯作者:张鑫 E-mail:kangfuke2008@163.com
更新日期/Last Update: 1900-01-01