[1]刘静文,李辉,赵玉敏,等.不同高度负跟鞋对健康成人腰腹肌和下肢肌活动的影响[J].中医正骨,2023,35(05):14-19.
 LIU Jingwen,LI Hui,ZHAO Yumin,et al.Effects of negative heel shoes of different heights on the activity of psoas and abdominal muscles and lower limb muscles in healthy adults[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2023,35(05):14-19.
点击复制

不同高度负跟鞋对健康成人腰腹肌和下肢肌活动的影响()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第35卷
期数:
2023年05期
页码:
14-19
栏目:
临床研究
出版日期:
2023-05-20

文章信息/Info

Title:
Effects of negative heel shoes of different heights on the activity of psoas and abdominal muscles and lower limb muscles in healthy adults
作者:
刘静文李辉赵玉敏刘鹏民王文彪
(新乡医学院第一附属医院,河南 卫辉 453100)
Author(s):
LIU JingwenLI HuiZHAO YuminLIU PengminWANG Wenbiao
The First Affiliated Hospital of Xinxiang Medical University,Weihui 453100,Henan,China
关键词:
肌电描记术 负跟鞋 腰肌 腹肌 下肢肌 横断面研究
Keywords:
electromyography negative heel shoes psoas muscles abdominal muscles muscle of lower limb cross-sectional studies
摘要:
目的:探讨不同高度负跟鞋对健康成人腰腹肌和下肢肌活动的影响。方法:选取45名健康成人作为受试者,男15名、女30名,年龄(34.87±12.79)岁,身高(167.93±7.15)cm,体质量(65.87±10.82)kg。采用BTS FreeEMG300无线表面肌电系统测定受试者依次穿5种不同高度的负跟鞋(平底鞋、0.5 cm负跟鞋、1 cm负跟鞋、1.5 cm负跟鞋、2 cm负跟鞋)自然匀速直线行走7个步行周期时,双侧腹直肌、腰椎旁肌、胫骨前肌及腓肠肌内侧头的表面肌电信号均方根值(root mean square,RMS)。结果:①腹直肌。受试者穿同一高度负跟鞋行走时,双侧腹直肌表面肌电信号RMS比较,差异均无统计学意义[平底鞋:(15.80,13.59)μV,(17.81,11.70)μV,Z=-5.150,P=0.606; 0.5 cm负跟鞋:(16.58,11.77)μV,(17.38,10.77)μV,Z=-0.125,P=0.901; 1 cm负跟鞋:(16.33,11.62)μV,(17.25,12.12)μV,Z=-5.190,P=0.604; 1.5 cm负跟鞋:(17.50,11.51)μV,(18.09,12.47)μV,Z=-0.023,P=0.981; 2 cm负跟鞋:(16.80,11.41)μV,(17.64,10.86)μV,Z=-0.164,P=0.870]; 受试者穿不同高度负跟鞋行走时,同侧腹直肌表面肌电信号RMS比较,差异均无统计学意义(左侧:χ2=9.191,P=0.056; 右侧:χ2=8.645,P=0.071)。②腰椎旁肌。受试者穿同一高度负跟鞋行走时,双侧腰椎旁肌表面肌电信号RMS比较,差异均无统计学意义[平底鞋:(5.43,5.46)μV,(5.65,3.45)μV,Z=-0.412,P=0.681; 0.5 cm负跟鞋:(6.04,5.25)μV,(6.53,3.54)μV,Z=-0.198,P=0.843; 1 cm 负跟鞋:(6.10,5.60)μV,(6.00,4.21)μV,Z=-0.149,P=0.881; 1.5 cm负跟鞋:(5.85,5.82)μV,(5.83,4.20)μV,Z=-0.222,P=0.824; 2 cm负跟鞋:(6.60,5.15)μV,(5.73,4.41)μV,Z=-0.052,P=0.958]; 受试者穿不同高度负跟鞋行走时,同侧腰椎旁肌表面肌电信号RMS比较,差异均无统计学意义(左侧:χ2=4.996,P=0.288; 右侧:χ2=9.156,P=0.057)。③胫骨前肌。受试者穿同一高度负跟鞋行走时,双侧胫骨前肌表面肌电信号RMS比较,差异均无统计学意义[平底鞋:(51.27,39.27)μV,(49.65,48.12)μV,Z=-0.399,P=0.690; 0.5 cm负跟鞋:(51.92,42.07)μV,(54.11,46.61)μV,Z=-0.101,P=0.920; 1 cm负跟鞋:(51.46,39.79)μV,(58.69,33.93)μV,Z=-0.488,P=0.625; 1.5 cm负跟鞋:(58.53,29.36)μV,(49.16,47.71)μV,Z=-0.480,P=0.631; 2 cm负跟鞋:(56.26,41.17)μV,(53.54,45.56)μV,Z=-0.246,P=0.806]。受试者穿不同高度负跟鞋行走时,右侧胫骨前肌表面肌电信号RMS的差异无统计学意义(χ2=5.831,P=0.212)。受试者穿平底鞋、0.5 cm负跟鞋、1 cm负跟鞋行走时的左侧胫骨前肌表面肌电信号RMS均低于穿2 cm负跟鞋行走时的左侧胫骨前肌表面肌电信号RMS(χ2=-4.133,P=0.000; χ2=-2.867,P=0.041; χ2=-3.000,P=0.027),穿平底鞋行走时的左侧胫骨前肌表面肌电信号RMS低于穿1.5 cm负跟鞋行走时的左侧胫骨前肌表面肌电信号RMS(χ2=-3.133,P=0.017)。④腓肠肌内侧头。受试者穿同一高度负跟鞋行走时,双侧腓肠肌内侧头表面肌电信号RMS比较,差异均无统计学意义[平底鞋:(50.13,28.83)μV,(51.75,30.80)μV,Z=-0.344,P=0.731; 0.5 cm负跟鞋:(53.14,28.77)μV,(56.79,32.07)μV,Z=-0.246,P=0.806; 1 cm负跟鞋:(53.04,27.31)μV,(54.46,26.19)μV,Z=-0.026,P=0.979; 1.5 cm负跟鞋:(56.17,27.91)μV,(58.90,31.46)μV,Z=-0.064,P=0.949; 2 cm负跟鞋:(53.36,34.45)μV,(58.19,32.32)μV,Z=-0.563,P=0.573]。受试者穿不同高度负跟鞋行走时,左侧腓肠肌内侧头表面肌电信号RMS两两比较,差异均无统计学意义。受试者穿平底鞋、0.5 cm负跟鞋、1 cm负跟鞋行走时的右侧腓肠肌内侧头表面肌电信号RMS均低于穿2 cm负跟鞋行走时的右侧腓肠肌内侧头表面肌电信号RMS(χ2=-3.333,P=0.009; χ2=-3.000,P=0.027; χ2=-3.467,P=0.005)。结论:健康成人穿高度≤2 cm的负跟鞋短时间匀速直线行走,不会影响两侧腰腹肌和下肢肌收缩的对称性; 负跟鞋高度对下肢肌活动影响较大,对腰腹肌无明显影响。
Abstract:
Objective:To investigate the effects of negative heel shoes of different heights on the activity of psoas and abdominal muscles and lower limb muscles in healthy adults.Methods:Forty-five healthy adults were enrolled,including 15 males and 30 females,with age of(34.87±12.79)years,height of(167.93±7.15)cm,and weight of(65.87±10.82)kg.The surface electromyography(EMG)signals of the bilateral rectus abdominis,paravertebral muscle,tibialis anterior,and medial head of the gastrocnemius muscle were measured using the BTS FreeEMG300 wireless surface EMG system while the participants walked in a straight line at a natural and uniform pace for seven walking cycles in five different heights of negative heel shoes(flat shoes,0.5 cm,1 cm,1.5 cm,and 2 cm negative heel shoes).The root mean square(RMS)of the surface EMG signals was calculated.Results:①Rectus abdominis.When the participants walked in negative heel shoes of the same height,there was no statistical difference in the RMS of the surface EMG signals between the bilateral rectus abdominis(flat shoes:(15.80,13.59)vs(17.81,11.70)μV,Z=-5.150,P=0.606; 0.5 cm negative heel shoes:(16.58,11.77)vs(17.38,10.77)μV,Z=-0.125,P=0.901; 1 cm negative heel shoes:(16.33,11.62)vs(17.25,12.12)μV,Z=-5.190,P=0.604; 1.5 cm negative heel shoes:(17.50,11.51)vs(18.09,12.47)μV,Z=-0.023,P=0.981; 2 cm negative heel shoes:(16.80,11.41)vs(17.64,10.86)μV,Z=-0.164,P=0.870).When the participants walked in negative heel shoes of different heights,there was no statistical difference in the RMS of the surface EMG signals of the ipsilateral rectus abdominis(left side:χ2=9.191,P=0.056; right side:χ2=8.645,P=0.071).②Paravertebral muscle.When the participants walked in negative heel shoes of the same height,there was no statistical difference in the RMS of surface EMG signals between the bilateral paravertebral muscle(flat shoes:(5.43,5.46)vs(5.65,3.45)μV,Z=-0.412,P=0.681; 0.5 cm negative heel shoes:(6.04,5.25)vs(6.53,3.54)μV,Z=-0.198,P=0.843; 1 cm negative heel shoes:(6.10,5.60)vs(6.00,4.21)μV,Z=-0.149,P=0.881; 1.5 cm negative heel shoes:(5.85,5.82)vs(5.83,4.20)μV,Z=-0.222,P=0.824; 2 cm negative heel shoes:(6.60,5.15)vs(5.73,4.41)μV,Z=-0.052,P=0.958).When the participants walked in negative heel shoes of different heights,there was no statistical difference in the RMS of surface EMG signals of the ipsilateral paravertebral muscle(left side:χ2=4.996,P=0.288; right side:χ2=9.156,P=0.057).③Tibialis anterior.When the participants walked in negative heel shoes of the same height,there was no statistical difference in the RMS of surface EMG signals between the bilateral tibialis anterior(flat shoes:(51.27,39.27)vs(49.65,48.12)μV,Z=-0.399,P=0.690; 0.5 cm negative heel shoes:(51.92,42.07)vs(54.11,46.61)μV,Z=-0.101,P=0.920; 1 cm negative heel shoes:(51.46,39.79)vs(58.69,33.93)μV,Z=-0.488,P=0.625; 1.5 cm negative heel shoes:(58.53,29.36)vs(49.16,47.71)μV,Z=-0.480,P=0.631; 2 cm negative heel shoes:(56.26,41.17)vs(53.54,45.56)μV,Z=-0.246,P=0.806).When the participants walked in negative heel shoes of different heights,there was no statistical difference in the RMS of surface EMG signals of the tibialis anterior on the right side(χ2=5.831,P=0.212).The RMS of the surface EMG signals of the tibialis anterior on the left side when participants walked in flat shoes,0.5 cm negative heel shoes,and 1 cm negative heel shoes was lower than that in 2 cm negative heel shoes(χ2=-4.133,P=0.000; χ2=-2.867,P=0.041; χ2=-3.000,P=0.027).The RMS of the surface EMG signals of the tibialis anterior on the left side when participants walked in flat shoes was lower than that in 1.5 cm negative heel shoes(χ2=-3.133,P=0.017).④Medial head of the gastrocnemius muscle.When the participants walked in negative heel shoes of the same height,there was no statistical difference in the RMS of surface EMG signals between the bilateral medial head of the gastrocnemius muscle(flat shoes:(50.13,28.83)vs(51.75,30.80)μV,Z=-0.344,P=0.731; 0.5 cm negative heel shoes:(53.14,28.77)vs(56.79,32.07)μV,Z=-0.246,P=0.806; 1 cm negative heel shoes:(53.04,27.31)vs(54.46,26.19)μV,Z=-0.026,P=0.979; 1.5 cm negative heel shoes:(56.17,27.91)vs(58.90,31.46)μV,Z=-0.064,P=0.949; 2 cm negative heel shoes:(53.36,34.45)vs(58.19,32.32)μV,Z=-0.563,P=0.573).When the participants walked in negative heel shoes of different heights,there was no statistical difference in the RMS of the surface EMG signals of the medial head of the gastrocnemius muscle on the left side.The RMS of the surface EMG signals of the medial head of the gastrocnemius muscle on the right side when participants walked in flat shoes,0.5 cm negative heel shoes,and 1 cm negative heel shoes was lower than that in 2 cm negative heel shoes(χ2=-3.333,P=0.009; χ2=-3.000,P=0.027; χ2=-3.467,P=0.005).Conclusion:For healthy adults,walking in a straight line at a constant speed in negative heel shoes with a height of≤2 cm does not affect the symmetry of the contraction of the bilateral psoas muscles,abdominal muscles,and muscle of lower limb.The height of the negative heel shoes has a significant impact on the activity of the muscle of lower limb but has no significant effect on the psoas and abdominal muscles.

参考文献/References:

[1] 樊一婷.负跟鞋对人体运动时髋、膝、踝的生物力学影响分析[J].中国皮革,2022,51(5):75-78.
[2] 翟佳滨,任连军,王祁荣.负跟鞋足部“穴位”按摩保健的医学实验与临床观察[J].双足与保健,2019(2):39-40.
[3] PAPAGIANNIS G I,TRIANTAFYLLOU A I,ROUMPELAKIS I M,et al.Methodology of surface electromyography in gait analysis:review of the literature[J].J Med Eng Technol,2019,43(1):59-65.
[4] 李建华,王建.表面肌电图诊断技术临床应用[M].杭州:浙江大学出版社,2015:177-178.
[5] 雷烨,田苗,李俊.鞋履对人体平衡稳定性的影响研究进展[J].皮革科学与工程,2020,30(2):30-37.
[6] 刘凡,曹蕾.表面肌电应用的新进展[J].体育世界(学术版),2019,793(7):149-151.
[7] HAO Z,XIE L,WANG J,et al.Spatial distribution and asymmetry of surface electromyography on lumbar muscles of soldiers with chronic low back pain[J].Pain Res Manag,2020,2020:6946294.
[8] 陈文敏,肖玲玲,李慧慧,等.单侧痛腰椎间盘突出症的表面肌电信号特征[J].中国医学物理学杂志,2017,34(10):1022-1026.
[9] 梁杰,陈述荣,卢惠苹,等.单侧腰椎间盘突出症患者椎旁肌表面肌电信号特征[J].按摩与康复医学,2019,10(23):5-7.
[10] HLAING S S,PUNTUMETAKUL R,KHINE E E,et al.Effects of core stabilization exercise and strengthening exercise on proprioception,balance,muscle thickness and pain related outcomes in patients with subacute nonspecific low back pain:a randomized controlled trial[J].BMC Musculoskelet Disord,2021,22(1):998.
[11] KAWAMA R,IKE A,SOMA A,et al.Side-to-side difference in electromyographic activity of abdominal muscles during asymmetric exercises[J].J Sports Sci Med,2022,21(4):493-503.
[12] 赵苛宇,包天链,杨物鹏,等.退行性腰椎管狭窄症与脊柱-骨盆矢状位失衡及椎旁肌退变关系的研究进展[J].中医正骨,2022,34(1):59-62.
[13] BAI D Y,YUAN Z G,SHAO J J,et al.Unstable shoes for the treatment of lower back pain:a meta-analysis of rando-mized controlled trials[J].Clin Rehabil,2019,33(11):1713-1721.
中医正骨2023年5月第35卷第5期 J Trad Chin Orthop Trauma,2023,Vol.35,No.5(总339)
(总340)中医正骨2023年5月第35卷第5期 J Trad Chin Orthop Trauma,2023,Vol.35,No.5
[14] 朱瑶佳,霍洪峰.不同姿势站立时人体的平衡能力及足型特征[J].中国组织工程研究,2019,23(15):2345-2349.
[15] QU X,HU X,ZHAO J,et al.The roles of lower-limb joint proprioception in postural control during gait[J].Appl Ergon,2022,99:103635.
[16] CHEN X,QU X.Age-related differences in the relationships between lower-limb joint proprioception and postural balance[J].Hum Factors,2019,61(5):702-711.
[17] FUKUCHI C A,FUKUCHI R K,DUARTE M.Effects of walking speed on gait biomechanics in healthy participants:a systematic review and meta-analysis[J].Syst Rev,2019,8(1):153.
[18] ZHANG L,YAN Y,LIU G,et al.Effect of fatigue on kinematics,kinetics and muscle activities of lower limbs during gait[J].Proc Inst Mech Eng H,2022,236(9):1365-1374.
[19] WHITELEY R,HANSEN C,THOMSON A,et al.Lower limb EMG activation during reduced gravity running on an incline.Speed matters more than hills irrespective of indicated bodyweight[J].Gait Posture,2021,83:52-59.
[20] LATASH M L.Muscle coactivation:definitions,mechanisms,and functions[J].J Neurophysiol,2018,120(1):88-104.
[21] 陈泽华,叶翔凌,陈伟健,等.健康成年人下肢本体感觉与姿势稳定性的关系[J].中国组织工程研究,2020,24(29):4692-4696.
[22] 王静,吴效明.基于表面肌电的步态分析[J].中国组织工程研究,2012,16(26):4834-4840.
[23] HU Y,SIU S H,MAK J N,et al.Lumbar muscle electromyographic dynamic topography during flexion-extension[J].J Electromyogr Kinesiol,2010,20(2):246-255.

备注/Memo

备注/Memo:
基金项目:二〇二一年度新乡医学院第一附属医院青年培育基金项目(QN-2021-B04) 通讯作者:王文彪 E-mail:13639635206@163.com
更新日期/Last Update: 1900-01-01