[1]郭悦,董鑫宇,苏秀云,等.六自由度并联机器人模拟中医正骨手法复位简单骨折的可行性研究[J].中医正骨,2020,32(07):1-5.
 GUO Yue,DONG Xinyu,SU Xiuyun,et al.A feasibility study of simulated TCM bone-setting manipulative reduction using 6-degree of freedom parallel robot for treatment of simple fractures[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2020,32(07):1-5.
点击复制

六自由度并联机器人模拟中医正骨手法复位简单骨折的可行性研究()
分享到:

《中医正骨》[ISSN:1001-6015/CN:41-1162/R]

卷:
第32卷
期数:
2020年07期
页码:
1-5
栏目:
基础研究
出版日期:
2020-07-20

文章信息/Info

Title:
A feasibility study of simulated TCM bone-setting manipulative reduction using 6-degree of freedom parallel robot for treatment of simple fractures
作者:
郭悦1董鑫宇2苏秀云1张海涛1康会坤1孙昊2陈建文1
1.国家康复辅具研究中心附属康复医院,北京 100176; 2.河北工业大学,天津 300401
Author(s):
GUO Yue1DONG Xinyu2SU Xiuyun1ZHANG Haitao1KANG Huikun1SUN Hao2CHEN Jianwen1
1.The Affiliated Rehabilitation Hospital of National Research Center for Rehabilitation Technical Aids,Beijing 100176,China 2.Hebei University of Technology,Tianjin 300401,China
关键词:
正骨手法 骨折 六自由度并联机器人
Keywords:
bone setting manipulation fractures 6-degree of freedom parallel robot
摘要:
目的:探讨六自由度并联机器人模拟中医正骨手法复位简单骨折的可行性。方法:利用MATLAB软件绘制六自由度并联机器人的工作空间。将1个人体胫骨模型从中段切断,模拟胫骨横形骨折。通过计算机在测定的机器人工作空间范围内随机生成100例胫骨横形骨折的移位和成角数据。根据机器人的实际指标采用MATLAB软件对100例胫骨横形骨折进行模拟复位,然后按照模拟的骨折移位、成角数据摆放胫骨骨折模型,胫骨骨折模型两端采用直径4.0 mm螺纹骨针分别固定在机器人的固定平台和动平台上,采用机器人对胫骨骨折模型进行复位。结果:六自由度并联机器人的动平台在正立位时的工作空间为高度300 mm、活动半径250 mm的伞形区域。MATLAB软件模拟复位的平均位移误差为0.21 mm,平均成角误差为0.02°; 机器人复位骨折的平均位移误差为1.2 mm、平均成角误差为1.3°,最大位移误差为2.6 mm、最大成角误差为2.1°。结论:六自由度并联机器人的工作空间覆盖范围广,复位简单骨折精度高,应用该机器人模拟中医正骨手法复位简单骨折具有较高的可行性。
Abstract:
Objective:To explore the feasibility of simulated TCM bone-setting manipulative reduction using 6-degree of freedom(DOF)parallel robot for treatment of simple fractures.Methods:The workspace of 6-DOF parallel robot was drawn by using MATLAB software.A human tibial model was selected and cut in half to simulate tibial transverse fracture.The displacement and angulation data of 100 transverse tibial fracture models were randomly generated by computer within the range of measured workspace of the 6-DOF parallel robot.The fracture reductions were simulated on 100 transverse tibial fracture models by using MATLAB software according to the actual indexes of 6-DOF parallel robot,and the tibial fracture models were placed according to the simulated displacement and angulation data.The opposite ends of tibial fracture models were fixed on the fixed platform and moving platform of the robot respectively with 4.0-mm diameter screw-thread spicules,and reductions were performed on the tibial fracture models by 6-DOF parallel robot.Results:The workspace of the moving platform of 6-DOF parallel robot in orthostatism was an umbrella-shaped area with 300 mm in height and 250 mm in moving radius.The mean deviation in displacement and angulation were 0.21 mm and 0.02 degrees respectively in simulating reduction by MATLAB software,and were 1.2 mm and 1.3 degrees respectively in simulating reduction by 6-DOF parallel robot.The maximum deviation in displacement and angulation were 2.6 mm and 2.1 degrees respectively in simulating reduction by 6-DOF parallel robot.Conclusion:The 6-DOF parallel robot covers wide area in the workspace and has a high accuracy in reduction of simple fractures.It is feasible for 6-DOF parallel robot to simulate TCM bone-setting manipulation in reduction of simple fractures.

参考文献/References:

[1] 张尚盈,赵慧,韩俊伟.六自由度运动平台实时控制的正/反解算法[J].机床与液压,2003(3):133-135.
[2] 陈丽.Stewart平台6-DOF并联机器人完整动力学模型的建立[J].燕山大学学报,2004,28(3):228-232.
[3] GOSSELIN C.Determination of the workspace of 6-DOF parallel manipulators[J].Journal of Mechanical Design,1990,112(3):331-336.
[4] 吴生富,王洪波,黄真.并联机器人工作空间的研究[J].机器人,1991,13(3):33-39.
[5] 王军强.骨科手术机器人临床应用的优势和局限[J].中国医刊,2016,51(10):1.
[6] SEIDE K,FASCHINGBAUER M,WENZL M E,et al.A hexapod robot external fixator for computer assisted fracture reduction and deformity correction[J].Int J Med Robot,2004,1(1):64-69.
[7] LI C,WANG T M,HU L,et al.A visual servo-based teleoperation robot system for closed diaphyseal fracture reduction[J].Proc Inst Mech Eng H,2015,229(9):629-637.
[8] 韩巍,王军强,林鸿,等.主从式长骨骨折复位机器人的实验研究[J].北京生物医学工程,2015,34(1):12-17.
[9] WEI M,CHEN J,GUO Y E,et al.The computer-aided parallel external fixator for complex lower limb deformity correction[J].Int J Comput Assist Radiol Surg,2017,12(12):2107-2117.
[10] 颜景涛,陈建文,王现海.计算机辅助Taylor外固定架结合足部截骨治疗成人严重马蹄内翻足[J].中国矫形外科杂志,2015,23(21):2003-2006.
[11] 陈建文,颜景涛,郭悦.计算机辅助外固定支架在复杂胫腓骨畸形截骨矫正术中的应用[J].中华创伤骨科杂志,2015,17(7):589-593.
[12] 陈建文,颜景涛,郭悦.计算机辅助Taylor空间支架治疗严重屈膝畸形的临床研究[J].中国矫形外科杂志,2015,23(9):852-855.
[13] 陈建文,秦泗河,焦绍锋,等.Ilizarov技术矫治儿童马蹄内翻足畸形[J].中华小儿外科杂志,2010,31(5):350-353.
[14] ZHANG X S,SUN H,CHEN J W,et al.Optimization of electronic prescription for parallel external fixator based on genetic algorithm[J].Springer International Publishing,2019,14(5):861-871.
[15] CHEN X H,SUN H,ZHANG H.A New method of simultaneous localization and mapping for mobile robots using acoustic landmarks[J].MDPI,2019,9(7):1-24.
[16] 孙昊,张习帅,陈建文,等.基于蚁群算法的骨外固定器处方优化[J].仪器仪表学报,2018,39(10):232-240.

相似文献/References:

[1]江涛,江林,史俊德,等.动气针法在踝关节骨折术后中后期康复中的应用[J].中医正骨,2015,27(11):20.
 JIANG Tao,JIANG Lin,SHI Junde,et al.Application of Dongqi acupuncture(动气针法)to postoperative rehabilitation in the middle-late period in patients with ankle joint fractures[J].The Journal of Traditional Chinese Orthopedics and Traumatology,2015,27(07):20.
[2]许兵,叶小雨,王萧枫,等.小管径经皮椎体后凸成形术治疗 骨质疏松性椎体重度压缩骨折[J].中医正骨,2015,27(11):29.
[3]王 强.胫腓下联合骨牵引配合手法整复小夹板外固定治疗 儿童闭合移位性股骨干骨折[J].中医正骨,2015,27(10):15.
[4]全先辉,万春友,刘磊,等.Taylor空间支架外固定治疗胫腓骨开放性骨折[J].中医正骨,2015,27(10):30.
[5]袁伟,周晓莉.T形掌指骨微型钢板内固定治疗锁骨近端骨折[J].中医正骨,2015,27(10):47.
[6]白晨平.微型钢板内固定治疗掌指骨骨折[J].中医正骨,2015,27(08):26.
[7]何 涛.带尾孔髌骨针联合缆索内固定系统治疗闭合性髌骨骨折[J].中医正骨,2015,27(08):41.
[8]朱彦昭,申成春,蒋丽娜,等.早期手术修复踝关节骨折合并的三角韧带完全断裂[J].中医正骨,2015,27(08):46.
[9]董正超,姚新苗.髌骨骨折的分型及内固定治疗进展[J].中医正骨,2015,27(08):58.
[10]李时军,丁文军,刘立春.耻骨下支应力性骨折1例[J].中医正骨,2015,27(08):74.

备注/Memo

备注/Memo:
基金项目:北京市科技计划课题(Z181100001718194) 通讯作者:陈建文 E-mail:15680344@qq.com
更新日期/Last Update: 2020-07-20